JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (12): 87-95.doi: 10.6040/j.issn.1671-9352.0.2023.074
Previous Articles Next Articles
LI Xing, YOU Shouke*
CLC Number:
[1] COURANT R, FRIEDRICHS K O. Supersonic flow and shock waves[M]. New York: Interscience, 1948. [2] SHENG Wancheng, YOU Shouke. The two-dimensional unsteady supersonic flow around a convex corner[J]. Journal of Hyperbolic Differential Equations, 2018, 15(3):443-461. [3] SHENG Wancheng, YAO Aidi. Centered simple waves for the two-dimensional pseudo-steady isothermal flow around a convex corner[J]. Applied Mathematics and Mechanics(English Edition), 2019, 40(5):705-718. [4] CHEN Shuxing, QU Aifang. Interaction of rarefaction waves in jet stream[J]. Journal of Differential Equations, 2010, 248(12):2931-2954. [5] SHENG Wancheng, YOU Shouke. Interaction of a centered simple wave and a planar rarefaction wave of the two-dimensional Euler equations for pseudo-steady compressible flow[J]. Journal de Mathématiques Pures et Appliquées, 2018, 114:29-50. [6] LAI Geng, SHENG Wancheng. Two-dimensional pseudosteady flows around a sharp corner[J]. Archive for Rational Mechanics and Analysis, 2021, 241(2):805-884. [7] YAO Aidi, SHENG Wancheng. Two-dimensional pseudo-steady supersonic flow around a sharp corner[J]. ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik, 2022, 102(2):e201800270. [8] CHEN Jianjun, YIN Gan, YOU Shouke. Expansion of gas by turning a sharp corner into vacuum for 2-D pseudo-steady compressible magnetohydro dynamics system[J]. Nonlinear Analysis: Real World Applications, 2020, 52:102955. [9] CHEN Jianjun, SHENG Wancheng. Simple waves of the two dimensional compressible Euler equations in magnetohydrodynamics[J]. Applied Mathematics Letters, 2018, 75:24-29. [10] CHEN Jianjun, SHEN Zhimin, YIN Gan. The expansion of a non-ideal gas around a sharp corner for 2-D compressible Euler system[J]. Mathematical Methods in the Applied Sciences, 2023, 46(2):2023-2041. [11] LI Jiequan, ZHANG Tong, ZHENG Yuxi. Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations[J]. Communications in Mathematical Physics, 2006, 267(1):1-12. [12] ZAFAR M, SHARMA V D. Expansion of a wedge of non-ideal gas into vacuum[J]. Nonlinear Analysis: Real World Applications, 2016, 31:580-592. [13] LI Jiequan, YANG Zhicheng, ZHENG Yuxi. Characteristic decompositions and interactions of rarefaction waves of 2-D Euler equations[J]. Journal of Differential Equations, 2011, 250(2):782-798. [14] CHEN Xiao, ZHENG Yuxi. The interaction of rarefaction waves of the two-dimensional Euler equations[J]. Indiana University Mathematics Journal, 2010, 59(1):231-256. [15] LAI Geng. On the expansion of a wedge of van der Waals gas into a vacuum II[J]. Journal of Differential Equations, 2016, 260(4):3538-3575. |
[1] | Fan YANG,Lihui GUO. Shadow wave solutions for ternary simplified chromatography equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(10): 89-100. |
[2] | LUO Li-ping, LUO Zhen-guo, ZENG Yun-hui. (Full)oscillatory problems of certain quasilinear hyperbolic systems with damping term [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 73-77. |
[3] | LUO Li-ping, LUO Zhen-guo, ZENG Yun-hui. (Strong) oscillation analysis of quasilinear hyperbolic systems with impulse effect [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(03): 57-61. |
[4] | DU Ya-li, WANG Xuan. Pullback attractor for the non-autonomous Berger equation with nonlinear damping [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(6): 30-41. |
[5] | OUYANG Bai-ping, XIAO Sheng-zhong. Global nonexistence of solutions to a class of semilinear double-wave equations with space-dependent coefficients on the nonlinearity [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(9): 59-65. |
[6] | WU Xiao-xia, MA Qiao-zhen. Time-dependent attractors of the wave equations with strong damping on Rn [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(6): 22-29. |
[7] | JIA Yi-fei, GUO Li-hui, BAI Yin-song. Shadow wave solution for the relativistic Chaplygin Euler equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(4): 55-65. |