JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (3): 88-99.doi: 10.6040/j.issn.1671-9352.0.2023.226

Previous Articles     Next Articles

Composite quantile regression estimation of linear mixed effects model

LI Jing1, YANG Yiping1,2 Symbolj@@, ZHAO Peixin1,2   

  1. 1. College of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China;
    2. Chongqing Key Laboratory of Social Economic and Applied Statistics, Chongqing 400067, China
  • Published:2025-03-10

Abstract: Considering the robust estimation problem of linear mixed effect model, a composite quantile regression estimation method based on orthogonal projection is proposed by combining the QR decomposition technique of matrix and the composite quantile regression method. The random effects are eliminated by QR decomposition technique, and then the fixed effects are estimated by constructing the composite quantile regression objective function. Under some regular conditions, the asymptotic normality of the proposed estimates is proved. The proposed estimation method does not need to make any restrictive assumptions about the distribution of model errors and random effects, and the estimates of fixed effects are not affected by random effects. Further, the simulation study compares the proposed method with the orthogonality-based estimation of moment method, which shows that the proposed method is robust and applied to the actual data analysis.

Key words: linear mixed effect model, QR decomposition, composite quantile regression, fixed effect, random effect

CLC Number: 

  • O212.7
[1] CUI H J, NG K W, ZHU L X. Estimation in mixed effects model with errors in variables[J]. Journal of Multivariate Analysis, 2004, 91(1):53-73.
[2] WU Ping, ZHU Lixing. An orthogonality-based estimation of moments for linear mixed models[J]. Scandinavian Journal of Statistics,2010,37:253-263.
[3] 陈心洁,林鹏,邹国华. 线性混合效应模型的FIC选择准则[J]. 统计研究,2015,32(3):100-103. CHEN Xinjie, LIN Peng, ZOU Guohua. FIC selection criteria for linear mixed effects models[J]. Statistical Research, 2015, 32(3):100-103.
[4] 林鹏. 一般线性混合效应模型的随机效应选择研究[J]. 系统科学与数学,2015,35(6):617-626. LIN Peng. Research on random effects selection for general linear mixed effects model[J]. Journal of Systems Science and Mathematical Sciences, 2015, 35(6):617-626.
[5] 赵培信,张帆,周小双. 不完全观测数据下混合效应模型的正交投影估计[J]. 工程数学学报,2023,40(1):97-109. ZHAO Peixin, ZHANG Fan, ZHOU Xiaoshuang. Orthogonal projection estimation for mixed effects models with incomplete observations data [J]. Chinese Journal of Engineering Mathematics, 2023, 40(1):97-109.
[6] ZOU Hui, YUAN Ming. Composite quantile regression and the oracle model selection theory[J]. The Annals of Statistics, 2008, 36(3):1108-1126.
[7] 王康宁,李劭珉,林路. 基于copula函数的纵向数据复合分位数回归及变量选择[J]. 中国科学(数学),2020,50(8):1097-1116. WANG Kangning, LI Shaomin, LIN Lu. Composite quantile regression and variable selection of longitudinal data based on copula function [J]. Science China Mathematics, 2020, 50(8):1097-1116.
[8] 刘艳霞,芮荣祥,田茂再. 部分线性变系数模型的新复合分位数回归估计[J]. 应用数学学报,2021,44(2):159-174. LIU Yanxia, RUI Rongxiang, TIAN Maozai. New composite quantile regression estimation for partial linear variable coefficient models [J]. Acta Mathematicae Applicatae Sinica, 2021, 44(2):159-174.
[9] 张永霞,田茂再. 基于贝叶斯的部分线性单指标复合分位回归的研究及其应用[J]. 系统科学与数学,2021,41(5):1381-1399. ZHANG Yongxia, TIAN Maozai. Research and application of partial linear single index composite quantile regression based on Bayes [J]. Journal of Systems Science and Mathematical Sciences, 2021, 41(5):1381-1399.
[10] 张立文,程东坡,薛文骏,等. 复合分位数下门限自回归模型的变点估计[J]. 中国科学(数学),2022,52(1):63-84. ZHANG Liwen, CHENG Dongpo, XUE Wenjun, et al. Change point estimation of autoregressive model with lower threshold of composite quantile [J]. Science China Mathematics, 2022, 52(1): 63-84.
[11] JIANG Rong, SUN Mengxian. Single-index composite quantile regression for ultra-high-dimensional date[J]. TEST, 2022, 31(2):443-460.
[12] GUO Chaohui, LYU Jing, WU Jibo. Composite quantile regression for ultra-high dimensional semiparametric modle averaging[J]. Computational Statistics & Data Analysis, 2021, 160:107231.
[13] KNIGHT K. Limiting distributions for l1 regression estimators under general conditions[J]. The Annals of Statistics, 1998, 26(2):755-770.
[14] MUNNELL A. Why has productivity growth declined productivity and public investment[J]. New England Economic Review, 1990, 1(2):3-22.
[1] WANG Xiao-gang1, 2, WANG Li-ming1,3*. Detection and estimation of partial structural change in a class of panel models [J]. J4, 2012, 47(7): 91-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TANG Xiao-hong1, HU Wen-xiao2*, WEI Yan-feng2, JIANG Xi-long2, ZHANG Jing-ying2, SHAO Xue-dong3. Screening and biological characteristics studies of wide wine-making yeasts[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 12 -17 .
[2] YUAN Rui-qiang,LIU Guan-qun,ZHANG Xian-liang,GAO Hui-wang . Features of hydrogen and oxygen isotopes in groundwater ofthe shallow part of Yellow River Delta[J]. J4, 2006, 41(5): 138 -143 .
[3] HE Hai-lun, CHEN Xiu-lan* . Circular dichroism detection of the effects of denaturants and buffers on the conformation of cold-adapted protease MCP-01 and  mesophilic protease BP01[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 23 -29 .
[4] WANG Bi-yu, CAO Xiao-hong*. The perturbation for the Browder’s theorem of operator matrix#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 90 -95 .
[5] HU Xuan-zi1, XIE Cun-xi2. A robot local path plan based on artificial immune network[J]. J4, 2010, 45(7): 122 -126 .
[6] LI Xiao-nan,LI Bi-jing,LI Shang-gang . [J]. J4, 2006, 41(5): 95 -99 .
[7] LI Yu, WANG Gui-jun*. Structures of DISO fuzzy system induced by a class of#br# regular implication operators[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 57 -63 .
[8] HU Ming-Di, SHE Yan-Hong, WANG Min. Topological properties of  three-valued   logic  metric space[J]. J4, 2010, 45(6): 86 -90 .
[9] ZHANG Hui . Generalized recursive preference in incomplete information[J]. J4, 2006, 41(1): 62 -68 .
[10] LIU Bao-cang,LU Chang-jing and SHI Kai-quan . Random characteristics of assistant sets[J]. J4, 2007, 42(2): 77 -82 .