JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (2): 41-50.doi: 10.6040/j.issn.1671-9352.0.2023.303
WU Xianxi, HUANG Danjun
CLC Number:
[1] MEYER W. Equitable coloring[J]. The American Mathematical Monthly, 1973, 80(8):920-922. [2] ERDÖS P. Theory of graphs and its applications[M]. Prague: Czechoslovak Academy of Sciences, 1964:159. [3] HAJNAL A, SZEMERÉDI E. Proof of a conjecture of P. Erdös[J]. Combinatorial Theory and Its Applications, 1969:601-623. [4] KIERSTEAD H A, KOSTOCHKA A V, MYDLARZ M, et al. A fast algorithm for equitable coloring[J]. Combinatorica, 2010, 30(2):217-224. [5] CHEN B L, LIH K W, WU P L. Equitable coloring and the maximum degree[J]. European Journal of Combinatorics, 1994, 15(5):443-447. [6] KIERSTEAD H A, KOSTOCHKA A V. Every 4-colorable graph with maximum degree 4 has an equitable 4-coloring[J]. Journal of Graph Theory, 2012, 71(1):31-48. [7] CHEN B L, LIH K W. Equitable coloring of trees[J]. Journal of Combinatorial Theory Series B, 1994, 61(1):83-87. [8] LIH K W, WU P L. On equitable coloring of bipartite graphs[J]. Discrete Mathematics, 1996, 151(1/2/3):155-160. [9] WANG Weifan. Equitable colorings of line graphs and complete r-partite graphs[J]. Systems Science and Mathematical Sciences, 2000, 13(2):190-194. [10] KOSTOCHKA A V. Equitable colorings of outerplanar graphs[J]. Discrete Mathematics, 2002, 258(1/2/3):373-377. [11] KOSTOCHKA A V, NAKPRASIT K. Equitable colourings of d-degenerate graphs[J]. Combinatorics, Probability and Computing, 2003, 12(1):53-60. [12] ZHANG Yi, YAP Hianpoh. Equitable colorings of planar graphs[J]. Journal of Combinatorial Mathematics and Combinatorial Computing, 1998, 27:97-105. [13] NAKPRASIT K. Equitable colorings of planar graphs with maximum degree at least nine[J]. Discrete Mathematics, 2012, 312(5):1019-1024. [14] KOSTOCHKA A, LIN D, XIANG Z M. Equitable coloring of planar graphs with maximum degree at least eight[J]. Discrete Mathematics, 2024, 347(6):113964. [15] ZHANG X. On equitable colorings of sparse graphs[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39(1):257-268. [16] ZHANG X, WANG H J, XU L. Equitable coloring of three classes of 1-planar graphs[J]. Acta Mathematicae Applicatae Sinica: English Series, 2018, 34(2):362-372. [17] CRANSTON D, MAHMOUD R. Equitable coloring in 1-planar graphs[EB/OL]. http://arxiv.org/abs/2311.14915. [18] DONG A J, ZOU Q S, LI G J. Equitable and list equitable colorings of graphs with bounded maximum average degree[J]. ARS Comb, 2016, 124:303-311. [19] DONG A J, ZHANG X. Equitable coloring and equitable choosability of graphs with small maximum average degree[J]. Discussiones Mathematicae Graph Theory, 2018, 38(3):829. [20] ZHU J L, BU Y H. Equitable list colorings of planar graphs without short cycles[J]. Theoretical Computer Science, 2008, 407(1/2/3):21-28. |
[1] | Jin LI,Changqing XU. Adjacent vertex distinguishing edge coloring of IC-planar graphs without intersecting triangles [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(12): 134-139. |
[2] | ZHANG Jiang-yue, XU Chang-qing. Linear 2-arboricity of graphs with maximum average degree at most 4 [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 7-10. |
[3] | PAN Wen-hua, XU Chang-qing. Neighbor sum distinguishing index of a kind of sparse graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 94-99. |
[4] | SUN Lin, CAI Hua. On the vertex-arboricity of embedded graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(02): 38-42. |
[5] | YAO Jing-jing, XU Chang-qing. Neighbor sum distinguishing total coloring of graphs with maximum degree 3 or 4 [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(02): 9-13. |
[6] | ZHANG Xin1, XU Lan2, LIU Gui-Zhen1. k-forested coloring of sparse graphs [J]. J4, 2011, 46(4): 1-3. |
|