JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (8): 21-33.doi: 10.6040/j.issn.1671-9352.0.2023.322

Previous Articles    

Stock market risk measurement based on W-G-VaR model

ZHANG Hui1, WEI Jiaqi1, MENG Wenyu2, ZHU Qingfeng1   

  1. 1. School of Statistics and Mathematics, Shandong University of Finance and Economics, Jinan 250014, Shandong, China;
    2. School of Finance, Shandong University of Finance and Economics, Jinan 250014, Shandong, China
  • Published:2025-07-25

Abstract: In order to verify that capturing the uncertainty features of the probability distribution of financial time series based on different frequency domain scales can effectively improve the measurement accuracy of VaR model, the W-G-VaR model is constructed by combining wavelet multi-resolution analysis with nonlinear expectation theory for the first time. Standard & Poors 500 composite stock price index(S& P 500 Index)and Shanghai(securities)composite index are selected as samples for empirical analysis. The results show that, compared to the G-VaR model, the W-G-VaR model constructed from the dual perspectives of the time domain and the frequency domain has more accurate risk measurement results throughout the sample period, especially during the occurrence of major risks, and the size of the window when capturing uncertainties does not affect the superiority of the W-G-VaR model.

Key words: wavelet multi-resolution analysis, nonlinear expectation theory, W-G-VaR model, tail risk

CLC Number: 

  • O211.9
[1] 宫晓琳,彭实戈,杨淑振,等. 基于不确定性分布的金融风险审慎管理研究[J]. 经济研究,2019,54(7):64-77. GONG Xiaolin, PENG Shige, YANG Shuzhen, et al. Research on prudent management of financial risk based on uncertainty distribution[J]. Economic Research Journal, 2019, 54(7):64-77.
[2] 宫晓琳,杨淑振,孙怡青,等. 基于概率统计不确定性模型的CCA方法[J]. 管理科学学报,2020,23(4):55-64. GONG Xiaolin, YANG Shuzhen, SUN Yiqing, et al. CCA method based on probabilistic statistical uncertainty model[J]. Journal of Management Science, 2020, 23(4):55-64.
[3] 彭实戈. 非线性期望的理论、方法及意义[J]. 中国科学:数学,2017,47(10):1223-1254. PENG Shige. Theory, method and significance of nonlinear expectation[J]. Scientia Sinica Mathematica, 2017, 47(10):1223-1254.
[4] 宫晓琳,杨淑振,胡金焱,等. 非线性期望理论与基于模型不确定性的风险度量[J]. 经济研究,2015,50(11):133-147. GONG Xiaolin, YANG Shuzhen, HU Jinyan, et al. Nonlinear expectation theory and risk measurement based on model uncertainty[J]. Economic Research Journal, 2015, 50(11):133-147.
[5] PEI Ziting, WANG Xishun, XU Yuhong, et al. A worst-case risk measure by G-VaR[J]. Acta Mathematicae Applicatae Sinica, English Series, 2021, 37(2):421-440.
[6] JIN Hanqing, PENG Shige. Optimal unbiased estimation for maximal distribution[EB/OL].(2016-11-23)[2023-07-22]. https://arxiv.org/abs/1611.07994v1.
[7] 彭选华,傅强. 基于小波多尺度分析的GARCH建模方法的拓展[J]. 系统工程理论与实践,2011,31(11):2060-2069. PENG Xuanhua, FU Qiang. Expansion of GARCH modeling method based on wavelet multi-scale analysis[J]. Systems Engineering Theory & Practice, 2011, 31(11):2060-2069.
[8] CHAKRABARTY A, DE A, GUNASEKARAN A, et al. Investment horizon heterogeneity and wavelet: overview and further research directions[J]. Physica A: Statistical Mechanics and Its Applications, 2015, 429:45-61.
[9] HE K J, LAI K K, YEN J. Ensemble forecasting of Value at Risk via multi resolution analysis based methodology in metals markets[J]. Expert Systems with Applications, 2012, 39(4):4258-4267.
[10] FERNANDEZ V. The CAPM and value at risk at different time-scales[J]. International Review of Financial Analysis, 2006, 15(3):203-219.
[11] GENÇAY R, SELÇUK F, WHITCHER B. Systematic risk and timescales[J]. Quantitative Finance, 2003, 3(2):108-116.
[12] FERNANDEZ V, LUCEY B M. Portfolio management under sudden changes in volatility and heterogeneous investment horizons[J]. Physica A: Statistical Mechanics and Its Applications, 2007, 375(2):612-624.
[13] MANCHANDA P, KUMAR J, SIDDIQI A. Mathematical methods for modelling price fluctuations of financial times series[J]. Journal of the Franklin Institute, 2007, 344(5):613-636.
[14] GENÇAY R, GRADOJEVIC N, SELÇUK F, et al. Asymmetry of information flow between volatilities across time scales[J]. Quantitative Finance, 2010, 10(8):895-915.
[15] 方意,和文佳,荆中博. 中美贸易摩擦对中国金融市场的溢出效应研究[J]. 财贸经济,2019,40(6):55-69. FANG Yi, HE Wenjia, JING Zhongbo. Research on the spillover effect of Sino-US trade frictions on Chinas financial market[J]. Finance and Trade Economics, 2019, 40(6):55-69.
[16] 胡春阳,马亚明,马金娅. 重大事件冲击下金融市场与实体经济间双向尾部风险溢出效应[J]. 金融经济学研究,2023,38(2):3-19. HU Chunyang, MA Yaming, MA Jinya. Bidirectional tail risk spillover effect between financial market and real economy under impact of major events[J]. Research in Financial Economics, 2023, 38(2):3-19.
[17] 崔金鑫,邹辉文. 时频视角下国际股市间高阶矩风险溢出效应研究[J]. 国际金融研究,2020,36(6):75-85. CUI Jinxin, ZOU Huiwen. Research on high-moment risk spillover effect between international stock markets from time-frequency perspective[J]. International Finance Research, 2020, 36(6):75-85.
[18] XU Qifa, JIN Bei, JIANG Cuixia. Measuring systemic risk of the Chinese banking industry: a wavelet-based quantile regression approach[J]. The North American Journal of Economics and Finance, 2021, 55:1-13.
[19] PERCIVAL D, WALDEN A. Wavelet methods for time series analysis[M]. Cambridge: Cambridge Press, 2000.
[20] PENG Shige, YANG Shuzhen, YAO Jianfeng. Improving Value-at-Risk prediction under model uncertainty[J]. Journal of Financial Econometrics, 2023, 21(1):228-259.
[21] 许启发,陈士俊,蒋翠侠,等. 极端VaR风险测度的新方法:QRNN+POT[J]. 系统工程学报,2016,31(1):33-44. XU Qifa, CHEN Shijun, JIANG Cuixia, et al. A new method for extreme VaR risk measurement: QRNN+POT[J]. Journal of Systems Engineering, 2016, 31(1):33-44.
[22] SONG Shijia, LI Handong. Predicting VaR for Chinas stock market: a score-driven model based on normal inverse Gaussian distribution[J].International Review of Financial Analysis, 2022, 82:1-20.
[23] 沈悦,李朝前,赵欣悦,等. 重大风险事件下全球股票市场风险传染效应研究[J]. 国际经贸探索,2023,39(4):83-99. SHEN Yue, LI Chaoqian, ZHAO Xinyue, et al. Study on the risk contagion effect of global stock market under major risk events[J]. Journal of International Economic and Trade Exploration, 2023, 39(4):83-99.
[24] TRIMECH A, BENAMMOU S. Multiscale Fama-French and VaR explanatory factor analysis: evidence to the French market[J]. International Journal of Decision Sciences, Risk and Management, 2012, 4(1/2):58-76.
[25] LOPEZ J A. Methods for evaluating Value-at-Risk estimates[J]. Federal Reserve Bank of San Francisco Economic Review, 1999, 2:3-17.
[26] DIEBOLD F, MARIANO R. Comparing predictive accuracy[J]. Journal of Business & Economic Statistics, 1994, 13(3):253-263.
[1] Qi GAO,Hongshuai DAI,Yanhua WU. MPEWMA chart for detecting tandem queuing network [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 104-110, 117.
[2] CHEN Li, LIN Ling. Stock option pricing with time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 36-41.
[3] and PENG Shi-ge . Robust option pricing model and empirical performance [J]. J4, 2006, 41(2): 69-73 .
[4] LI Shilong, LIU Xi. Double-triggered catastrophe put option with risk ratio and its pricing [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2025, 60(3): 12-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!