JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (12): 24-30.doi: 10.6040/j.issn.1671-9352.0.2023.389

Previous Articles     Next Articles

A structure theorem of post-Hopf modules over a cocommutative post-Hopf algebra

WANG Zhongwei   

  1. School of Science, Jinling University of Science and Technology, Nanjing 211169, Jiangsu, China
  • Published:2024-12-12

Abstract: In this paper, we mainly give a structure theorem of post-Hopf modules over a cocommutative post-Hopf algebra. Meanwhile, we construct a Hopf module structure of a post-Hopf modules over a cocommutative post-Hopf algebra, and construct a post-Hopf module structure of a Hopf module by the aid of relative Rota-Baxter operator with respect to a module bialgebra.

Key words: post-Hopf algebra, cocommutative, post-Hopf module, structure theorem, relative Rota-Baxter operator

CLC Number: 

  • O153.3
[1] LI Y N, SHENG Y H, TANG R. Post-Hopf algebras, relative Rota-Baxter operators and solutions of the Yang-Baxter equation[EB/OL].(2022-03-23)[2023-09-06]. https://arxiv.org/abs/2203.12174v1.
[2] EBRAHIMI-FARD K, LUNDERVOLD A, MUNTHE-KAAS H. On the Lie enveloping algebra of a post-Lie algebra[J]. Journal of Lie Theory, 2015, 25(4):1139-1165.
[3] OUDOM J M, GUIN D. On the Lie enveloping algebra of a pre-Lie algebra[J]. Journal of K-Theory, 2008, 2(1):147-167.
[4] FOISSY L. Extension of the product of a post-Lie algebra and application to the SISO feedback transformation group[M] //Computation and Combinatorics in Dynamics, Stochastics and Control. Cham: Springer, 2018:369-399.
[5] BAI C M, GUO L, SHENG Y H, et al. Post-groups,(Lie-)Butcher groups and the Yang-Baxter equation[J]. Mathematische Annalen, 2024, 388:3217-3167.
[6] MONTGOMERY S. Hopf algebras and their actions on rings[M]. Providence: American Mathematical Society, 1993.
[7] SWEEDLER M E. Hopf Algebras[M]. New York: Benjamin, 1969.
[8] DOI Y K. Unifying Hopf modules[J]. Journal of Algebra, 1992, 153(2):373-385.
[1] CHEN Quan-guo, GUO Ji-dong. The Monoidal category of generalized quantum cocommutative coalgebras [J]. J4, 2012, 47(12): 69-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Yao1, JIANG Mei-mei1, REN Yan-li2*. Some properties of skew polynomial rings#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 40 -45 .
[2] JI Pei-sheng, SUN Xiao-lu, JIANG Hua. Jordan derivations of Jordan algebras[J]. J4, 2012, 47(4): 1 -4 .
[3] . Computational humor researches and applications[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(7): 1 -10 .
[4] WANG Qiao,LIU Xiao-ji* . Characterization and perturbation of the generalized Drazin inverse for Banach space operators[J]. J4, 2008, 43(8): 42 -45 .
[5] CHENG Dan-Dan, XU Chun-Hua, YIN Zhi-Lei, YUE Qin-Yan, WANG Yan. Removal of Cr (VI) from aqueous solutions by nano β-FeOOH[J]. J4, 2010, 45(1): 31 -35 .
[6] WANG Jing,FAN Ting-jun*,JIANG Guo-jian,WU Zi-qiu,YANG Xiu-xia,CONG Ri-shan and YU Miao-miao . Morphological structure, type, cytochemical and phagocytotic characteristics of haemocytes from Octopus ocellatus gray[J]. J4, 2007, 42(5): 79 -85 .
[7] WANG Kai-rong, GAO Pei-ting. Two mixed conjugate gradient methods based on DY[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 16 -23 .
[8] HEN Yi-ming, SUN Hui, LIU Le-chun, FU Xiao-hong. Legendre polynomial method for solving Fredholm integro-differential  equations of fractional order with variable coefficient[J]. J4, 2013, 48(6): 80 -86 .
[9] HUANG Wei-ting, ZHAO Hong, ZHU William. Adaptive divide and conquer algorithm for cost-sensitive attribute reduction[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 98 -104 .
[10] SONG Jia-jia, CAO Xiao-hong, DAI Lei. The judgement for the small compact perturbation of SVEP for upper triangular operator matrices[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 61 -67 .