JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (12): 24-30.doi: 10.6040/j.issn.1671-9352.0.2023.389
Previous Articles Next Articles
WANG Zhongwei
CLC Number:
[1] LI Y N, SHENG Y H, TANG R. Post-Hopf algebras, relative Rota-Baxter operators and solutions of the Yang-Baxter equation[EB/OL].(2022-03-23)[2023-09-06]. https://arxiv.org/abs/2203.12174v1. [2] EBRAHIMI-FARD K, LUNDERVOLD A, MUNTHE-KAAS H. On the Lie enveloping algebra of a post-Lie algebra[J]. Journal of Lie Theory, 2015, 25(4):1139-1165. [3] OUDOM J M, GUIN D. On the Lie enveloping algebra of a pre-Lie algebra[J]. Journal of K-Theory, 2008, 2(1):147-167. [4] FOISSY L. Extension of the product of a post-Lie algebra and application to the SISO feedback transformation group[M] //Computation and Combinatorics in Dynamics, Stochastics and Control. Cham: Springer, 2018:369-399. [5] BAI C M, GUO L, SHENG Y H, et al. Post-groups,(Lie-)Butcher groups and the Yang-Baxter equation[J]. Mathematische Annalen, 2024, 388:3217-3167. [6] MONTGOMERY S. Hopf algebras and their actions on rings[M]. Providence: American Mathematical Society, 1993. [7] SWEEDLER M E. Hopf Algebras[M]. New York: Benjamin, 1969. [8] DOI Y K. Unifying Hopf modules[J]. Journal of Algebra, 1992, 153(2):373-385. |
[1] | CHEN Quan-guo, GUO Ji-dong. The Monoidal category of generalized quantum cocommutative coalgebras [J]. J4, 2012, 47(12): 69-71. |
|