JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (5): 13-19.doi: 10.6040/j.issn.1671-9352.0.2023.469

• Group Theory • Previous Articles    

Action on p-groups and p-supersolvability

BAI Pengfei, WANG Junxin*, CAO Jianji   

  1. School of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan 030006, Shanxi, China
  • Published:2025-05-19

Abstract: Let a finite group A act on a finite p-group P with |P|>pe≥p3, where e is a fixed positive integer. In this paper, it is proved that if every non-cyclic and non-maximal class subgroup of order pe of P is O p(A)-invariant, then O p(AAp-1) acts trivially on P(namely CP(O p(AAp-1))=P), where Ap-1 is a formation which consists of all abelian groups with exponent dividing p-1 and AAp-1 is the Ap-1-residue of A. Some sufficient conditions for a finite group to be p-supersolvable are also given.

Key words: non-cyclic and non-maximal class p-group, p-supersolvability, S-semipermutable, Zπ-permutability

CLC Number: 

  • O152
[1] 徐明曜,黄建华,李慧陵,等. 有限群导引[M]. 北京:科学出版社,1999:20-56. XU Mingyao, HUANG Jianhua, LI Huiling, et al. Finite groups guidance[M]. Beijing: Science Press, 1999:20-56.
[2] BERKOVICH Y, ISAACS I M. p-supersolvability and actions on p-groups stabilizing certain subgroups[J]. Journal of Algebra, 2014, 414:82-94.
[3] GUO Xiuyun, MENG Hangyang. Actions on p-groups with the kernel containing the F-residuals[J]. Communications in Algebra, 2017, 45:3022-3033.
[4] BAI Pengfei, GUO Xiuyun, ZHANG Boru. The Action on p-groups and p-supersolvability[J]. Algebra Colloquium, 2017, 24:685-696.
[5] 徐明曜,曲海鹏. 有限p群[M]. 北京:北京大学出版社,2010:63-75. XU Mingyao, QU Haipeng. Finite p-groups[M]. Beijing: Peking University Press, 2010:63-75.
[6] LI Baojun, GONG Lü. On f-hypercentral actions of finite group[J]. Communications in Algebra, 2009, 37:3410-3417.
[7] LÜ Gong, CHEN Qilin, LI Baojun. On cyclic actions of finite groups[J]. Mediterranean Journal of Mathematics, 2024, 21: 1-23.
[8] 曹建基,王俊新,白鹏飞. 蕴含交换极大子群的极大类 3-群上的光滑斜态射[J]. 山东大学学报(理学版),2024,59:23-30. CAO Jianji, WANG Junxin, BAI Pengfei. Smooth skew morphisms of a kind of maximal class 3-groups which have abelian maximal subgroups[J]. Journal of Shandong University(Natural Science), 2024, 59:23-30.
[9] WEI Xianbiao, GUO Xiuyun. On s-permutable subgroups and p-nilpotency of finite groups[J]. Communications in Algebra, 2009, 37:3410-3417.
[10] SKIBA A N. On weakly s-permutable subgroups of finite groups[J]. Journal of Algebra, 2007, 315:192-209.
[11] WANG Lifang, WANG Yanming. On s-semipermutable maximal and minimal subgroups of Sylow p-subgroups of finite groups[J]. Communications in Algebra, 2006, 34:143-149.
[12] GUO Xiuyun, LU Jiakuan. On SS-supplemented subgroups of finite groups and their properties[J]. Glasgow Mathematical Journal, 2012, 54:481-491.
[13] ASAAD M, HELIEL A A. On permutable subgroups of finite groups[J]. Archiv der Mathematik, 2003, 80:113-118.
[14] HELIEL A A, BALLESTER-BOLINCHES A, ESTEBAN-ROMERO R, et al. Z-permutable subgroups of finite groups[J]. Monatshefte für Mathematik, 2016, 179:523-534.
[15] 徐明曜. 有限群导引[M]. 北京:科学出版社,1999:74. XU Mingyao. Finite groups guidance[M]. Beijing: Science Press, 1999:74.
[16] ISAACS I M. Semipermutable π-subgroups[J]. Archiv der Mathematik(Basel), 2014, 102:1-6.
[1] Heyu GONG,Qin SHU,Ping ZHAO. On the rank of semigroup $\mathscr{C} \mathscr{F}_{(n, r)}$ [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(10): 122-126.
[2] Yang LIU,Chunmei GONG. r-wide semigroups with right regular medial idempotents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(10): 115-121.
[3] Xiaohong ZHANG,Wei LIU,Hongzhi WANG. Influence of second maximal subgroups with given properties on structure of groups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(8): 15-19, 27.
[4] Jianling GAO,Yuemei MAO,Chenchen CAO. Influence of SS-quasinormal subgroups on p-nilpotence of finite groups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(8): 9-14.
[5] Xingliang LIANG,Yuhang LI. A note on fractional S-acts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(8): 1-8.
[6] Yanxia LI,Jinke HAI. Number of homomorphisms between finitely generated Abelian groups and finite groups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(6): 103-107.
[7] Baijun GAO,Juping TANG,Zhichao GAO,Ju SONG. Influence of $\mathscr{F}$-supplemented property of maximal subgroups of Sylow p-subgroup on the structure of groups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(6): 98-102.
[8] Xiaoyan LI,Husheng QIAO. Characterizations of monoids by Condition (P′ E) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(6): 13-18.
[9] Chunmei GONG,Jiao PENG,Xuena bai. Good congruences on r-wide semigroups whose idempotents form normal band [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(6): 6-12.
[10] Xinyi WU,Husheng QIAO. Condition (P) and strong flatness [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(6): 1-5, 12.
[11] Jianji CAO,Junxin WANG,Pengfei BAI. Smooth skew morphisms of a kind of maximal class 3-groups which have abelian maximal subgroups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(4): 23-30.
[12] Wen TENG,Fengshan LONG. Cohomology and deformation of differential Lie-Yamaguti superalgebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(2): 32-37,46.
[13] Ruixia LU,Husheng QIAO. D-superfluous subacts of S-acts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(11): 71-75.
[14] Xingliang LIANG,Yun DANG,Xueying CHEN. On S-acts satisfying Condition (PI) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 6-12.
[15] Xian LING,Jinke HAI. Rational conjugacy of torsion units in integral group rings of nilpotent-by-Abelian groups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!