JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (8): 1-5.doi: 10.6040/j.issn.1671-9352.0.2023.477

   

Boundedness of fractional maximal operators with doubling measure on homogeneous trees

YE Xiaofeng, XIONG Shoulong, JIANG Zhicong   

  1. School of Science, East China Jiaotong University, Nanchang 330013, Jiangxi, China
  • Published:2025-07-25

Abstract: We defined the fractional maximal operators and found a control function related to the maximal operators. We obtain the boundedness of fractional maximal operators on homogeneous trees from the weak(1,1)type of maximal operators.

Key words: homogeneous trees, fractional maximal operator, doubling measure

CLC Number: 

  • O177
[1] DE MARI F, MONTI M, VALLARINO M. Harmonic Bergman projectors on homogeneous trees[J]. Potential Analysis, 2024, 61:153-182.
[2] MONTI M. H 1and BMO spaces for exponentially decreasing measures on homogeneous trees[EB/OL].(2023-01-18)[2024-07-03]. https://doi.org/10.48550/arXiv.2301.07600.
[3] HARDY G H, LITTLEWOOD J E. A maximal theorem with function-theoretic applications[J]. Acta Mathematica, 1930, 54(1):81-116.
[4] COIFMAN R R, WEISS G. Extensions of Hardy spaces and their use in analysis[J]. Bulletin of the American Mathematical Society, 1977, 83(4):569-645.
[5] LEVI M, SANTAGATI F. Hardy-Littlewood fractional maximal operators on homogeneous trees[EB/OL].(2022-11-21)[2024-07-03]. https://doi.org/10.48550/arXiv.2211.11871.
[6] CARBONARO A, MAUCERI G, MEDA S. H 1 and BMO for certain locally doubling metric measure spaces[J]. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 2009, 8(3):543-582.
[7] CARBONARO A, MAUCERI G, MEDA S. H 1 and BMO for certain nondoubling metric measure spaces[EB/OL].(2008-08-01)[2024-07-03]. https://doi.org/10.48550/arXiv.0808.0146.
[8] COWLING M, MEDA S, SETTI A. An overview of harmonic analysis on the group of isometries of a homogeneous tree[J]. Expositiones mathematicae, 1998, 16(5):385-423.
[9] ARDITTI L, TABACCO A, VALLARINO M. BMO spaces on weighted homogeneous trees[J]. The Journal of Geometric Analysis, 2021, 31(9):8832-8849.
[10] ARDITTI L. Analysis on weighted homogeneous trees[D]. Torino: Politecnico di Torino, 2018.
[11] LOFSTROM J B J, BERGH J. Interpolation spaces[EB/OL].(2020-02-01)[2024-07-03]. https://www.tesble.com/10.1007/978-3-642-66451-9.
[1] Zhanhong LIU,Shuangping TAO. Weighted estimates of fractional maximal operator and its commutator on Morrey spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(6): 108-115.
[2] LIU Ming, TAO Shuang-ping. Boundedness of fractional maximal operator on generalized Orlicz-Morrey spaces of homogeneous type [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(7): 22-31.
[3] TAO Shuang-ping, YANG Yu-he. Weighted estimates of fractional maximal operator and its commutator on weighted λ-central Morrey spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 68-75.
[4] TAO Shuang-ping, GAO Rong. Estimates of multilinear fractional integrals and maximal operators on weighted Morrey spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 30-37.
[5] SUN Ai-wen, WANG Xiao-shan, SHU Li-sheng. Boundedness of the Littlewood-Paley function g*λ, μ  on the generalized
Morrey spaces with non-doubling measures
[J]. J4, 2013, 48(12): 96-99.
[6] GENG Su-li, ZHAO Kai*, ZHANG Li-ping. Boundedness of Littlewood-Paley operators with non-doubling measures [J]. J4, 2013, 48(10): 78-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!