JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (2): 114-126.doi: 10.6040/j.issn.1671-9352.0.2023.518

Previous Articles    

Differential spectral approximation based on a dimensionality reduction for the fourth-order parabolic problem

WANG Junlin, HU Xiaoping, AN Jing*   

  1. School of Mathematical Science, Guizhou Normal University, Guiyang 550025, Guizhou, China
  • Published:2025-02-14

Abstract: This paper presents a differential spectral approximation for a fourth-order parabolic problem on a spherical domain based on a dimension reduction scheme. The fourth-order parabolic problem is transformed into an equivalent form in the spherical coordinates. By utilizing the properties of the Laplace-Beltrami operator and the orthogonality of the spherical harmonic functions, the problem is further decomposed into a series of decoupled one-dimensional fourth-order parabolic problems. Based on each one-dimensional fourth-order parabolic problem, its fully discrete scheme is established, and its stability and error estimation of the approximate solution are proved. Some numerical examples are given. The numerical results are shown that the differential spectral approximation algorithm is stable and convergent.

[1] MYERS T G. Thin films with high surface tension[J]. SIAM Review, 1998, 40(3):441-462.
[2] XU Meng, ZHOU Shulin. Existence and uniqueness of weak solutions for a generalized thin film equation[J]. Nonlinear Analysis(Theory, Methods and Applications), 2005, 60(4):755-774.
[3] DRAZIN P G, JOHNSON R S. Solitons: an introduction[M]. Cambridge: Cambridge University Press, 1989.
[4] SASSAMANR, BISWAS A. Soliton perturbation theory for phi-four model and nonlinear Klein-Gordon equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(8):3239-3249.
[5] WAZWAZ A M. New travelling wave solutions to the Boussinesq and the Klein-Gordon equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(5):889-901.
[6] SHEN Jie, YANG Xiaofeng. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations[J]. Discrete and Continuous Dynamical Systems, 2010, 28(4):1669-1691.
[7] OMRANI K. Convergence of Galerkin approximations for the Kuramoto-Tsuzuki equation[J]. Numerical Methods for Partial Differential Equations, 2005, 21(5):961-975.
[8] WANG Shanshan, WANG Tingchun, ZHANG Luming, et al. Convergence of a nonlinear finite difference scheme for the Kuramoto-Tsuzuki equation[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(6):2620-2627.
[9] ZHAO Xuan, SUN Zhizhong, HAO Zhaopeng. A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrodinger equation[J]. SIAM Journal on Scientific Computing, 2014, 36(6):A2865-A2886.
[10] SHEN Jie, XU Jie, YANG Jiang. The scalar auxiliary variable(SAV)approach for gradient flows[J]. Journal of Computational Physics, 2018, 353:407-416.
[11] SHEN Jie, XU Jie, YANG Jiang. A new class of efficient and robust energy stable schemes for gradient flows[J]. SIAM Review, 2019, 61(3):474-506.
[12] ROSSI R. On two classes of generalized viscous Cahn-Hilliard equations[J]. Communications on Pure and Applied Analysis, 2005, 4(2):405-430.
[13] SHEN Jie, YANG Xiaofeng. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations[J]. Discrete and Continuous Dynamical Systems, 2010, 28(4):1669-1691.
[14] 安静,江剑韬. 4阶Steklov特征值问题基于降维格式的一种有效的有限元法[J].贵州师范大学学报(自然科学版),2021,39(4):1-9. AN Jing, JIANG Jiantao. An efficient finite element method based on a dimensionality reduction format for the fourth-order Steklov eigenvalue problem[J]. Journal of Guizhou Normal University(Natural Science Edition), 2021, 39(4): 1-9.
[15] 刘忠敏,安静,陈悦. 圆域上变系数二阶椭圆方程有效的谱方法及其在奇异非线性问题中的应用[J]. 陕西师范大学学报(自然科学版), 2023, 51(1):30-37. LIU Zhongmin, AN Jing, CHEN Yue. An efficient spectral method for second-order elliptic equations with variable coefficients and its application in singular nonlinear problems in circular domains [J]. Journal of Shaanxi Normal University(Natural Science Edition), 2023, 51(1):30-37.
[16] 陈悦,安静,刘忠敏. 圆域上Schrodinger方程特征值问题有效的谱Galerkin逼近及误差估计[J]. 贵州师范大学学报(自然科学版), 2022, 40(6):23-32. CHEN Yue, AN Jing, LIU Zhongmin. Spectral Galerkin approximation and error estimation for Eigenvalue problem of Schrodinger equation on circular domain[J]. Journal of Guizhou Normal University(Natural Science Edition), 2022, 40(6):23-32.
[17] JIANG Jiantao, AN Jing. Numerical approximation based on a decoupled dimensionality reduction scheme for Maxwell eigenvalue problem[J]. Mathematical Methods in the Applied Sciences, 2023, 46(16):17367-17387.
[18] WANG Lilian. A review of prolate spheroidal wave functions from the perspective of spectral methods[J]. Journal of Mathematical Study, 2017, 50(2):101-143.
[19] HAYDAR A, SHEN Jie. Highly efficient and accurate spectral approximation of the angular Mathieu equation for any parameter values q[J]. Journal of Mathematical Study, 2018, 51(2):131-149.
[20] MA Lina, SHEN Jie, WANG Lilian. Spectral approximation of time-harmonic Maxwell equations in three-dimensional exterior domains[J]. International Journal of Numerical Analysis and Modeling, 2015, 12(2):366-383.
[21] LI Lan, AN Jing. An efficient spectral method and rigorous error analysis based on dimension reduction scheme for fourth order problems[J]. Numerical Methods for Partial Differential Equations, 2021, 37(1):152-171.
[22] SHEN Jie,TANG Tao. Spectral and high-order methods with applications[M]. Beijing: Science Press, 2006.
[23] SHEN Jie, TANG Tao, WANG Lilian. Spectral methods: algorithms, analysis and applications[M]. Springer: Springer Science and Business Media, 2011.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!