JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (5): 79-86.doi: 10.6040/j.issn.1671-9352.0.2024.020

Previous Articles    

The non-leaving-face property of exchange graphs of cluster algebras via G -systems

REN Yanlan, XIE Yunli*   

  1. School of Mathematics, Southwest Jiaotong University, Chengdu 611756, Sichuan, China
  • Published:2025-05-19

Abstract: Using the compatibility of mutation and Bongartz co-completion in cluster algebras with the corresponding G -systems and the combination results in G -systems, the required projection is constructed, and the exchange graph of any cluster algebra is proved to have the non-leaving-face property.

Key words: cluster algebra, the non-leaving-face property, G -systems, exchange graph

CLC Number: 

  • O153
[1] FOMIN S, ZELEVINSKY A. Cluster algebras I: foundations[J]. Journal of the American Mathematical Society, 2002, 15(2):497-529.
[2] FOMIN S, ZELEVINSKY A. Cluster algebras II: finite type classification[J]. Inventiones Mathematicae, 2003, 154(1):63-121.
[3] CHAPOTON F, FOMIN S, ZELEVINSKY A. Polytopal realizations of generalized associahedra[J]. Canadian Mathematical Bulletin, 2002, 45(4):537-566.
[4] READING N. Cambrian lattices[J]. Advances in Mathematics, 2006, 205(2):313-353.
[5] HOHLWEG C, LANGE C, THOMAS H. Permutahedra and generalized associahedra[J]. Advances in Mathematics, 2011, 226(1):608-640.
[6] CEBALLOS C, PILAUD V. The diameter of type D associahedra and the non-leaving-face property[J]. European Journal of Combinatorics, 2016, 51:109-124.
[7] SLEATOR D, TARJAN R, THURSTON W. Rotation distance, trangulations, and hyperbolic geometry[J]. Journal of the American Mathematical Society, 1988, 1(3):647-681.
[8] WILLIAMS N. W-associahedra have the non-leaving-face property[J]. European Journal of Combinatorics, 2017, 62:272-285.
[9] BRÜSTLE T, ZHANG Jie. Non-leaving-face property for marked surfaces[J]. Frontiers of Mathematics in China, 2019, 14(3):521-534.
[10] FU Changjian, GENG Shengfei, LIU Pin. Exchange graphs of cluster algebras have the non-leaving-face property[J]. Bulletin of the London Mathematical Society, 2023, 55(4):2062-2069.
[11] 曹培根. G -系统和丛代数[D]. 杭州:浙江大学, 2019. CAO Peigen. G -systems and cluster algebras[D]. Hangzhou: Zhejiang University, 2019.
[12] FOMIN S, ZELEVINSKY A. Cluster algebras Ⅳ: coefficients[J]. Compositio Mathematica, 2007, 143(1):112-164.
[13] GROSS M, HACKING P, KEEL S, et al. Canonical bases for cluster algebras[J]. Journal of the American Mathematical Society, 2018, 31(2):497-608.
[14] BRÜSTLE T, YANG Dong. Ordered exchange graphs[C] // Advances in representation theory of algebras, EMS Series of Congress Reports. Zürich: European Mathematical Society, 2013:135-193.
[15] NAKANISHI T, ZELEVINSKY A. On tropical dualities in cluster algebras[J]. Contemporary Mathematics, 2012, 565:217-226.
[16] CAO Peigen, LI Fang. The enough g-pairs property and denominator vectors of cluster algebras[J]. Mathematische Annalen, 2020, 377:1547-1572.
[1] GAO Xin-zhao, XIE Yun-li. Linear independence of cluster monomials of cluster algebras of type G2 via categorification [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(10): 34-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!