JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (2): 96-104.doi: 10.6040/j.issn.1671-9352.0.2024.021
LI Xuewen1, FENG Kexin2, WANG Xiaogang2*
CLC Number:
[1] KOENKER R, BASSETT G. Regression quantiles[J]. Econometrica, 1978, 46(1):211-244. [2] POWELL J L. Least absolute deviations estimation for the censored regression model[J]. Journal of Econometrics, 1984, 23(3):303-325. [3] POWELL J L. Censored regression quantiles[J]. Journal of Econometrics, 1986, 32(1):143-155. [4] PORTNOY S. Censored quantile regression[J]. Journal of American Statistical Association, 2003, 98(464):1001-1012. [5] FRUMENTO P, BOTTAI M. An estimating equation for censored and truncated quantile regression[J]. Computational Statistics and Data Analysis, 2016, 113:53-63. [6] CHEN Songnian. Sequential estimation of censored quantile regression models[J]. Journal of Econometrics, 2018, 207(1):30-52. [7] JIA Y C, JEONG J H. Deep learning for quantile regression under right censoring: DeepQuantreg[J]. Computational Statistics and Data Analysis, 2022, 165:107323. [8] NARISETTY N,KOENKER R. Censored quantile regression survival models with a cure proportion[J]. Journal of Econome-trics, 2022, 261(1):192-203. [9] ZHANG Feipeng, LI Qunhua. A continuous threshold expectile model[J]. Computational Statistics and Data Analysis, 2017, 116:49-66. [10] WANG Xiaogang, ZHOU Xiaoying, LI Bing, et al. A bent line Tobit regression model with application to household financial assets[J]. Journal of Statistical Planning and Inference, 2022, 221:69-80. [11] ZHOU Xiaoying, ZHANG Feipeng. Bent line quantile regression via a smoothing technique[J]. Statistical Analysis and Data Mining, 2020, 13(3):216-228. [12] 王小刚,李冰. 基于核函数方法的逐段线性Tobit回归模型估计[J]. 山东大学学报(理学版),2020,55(6):1-9. WANG Xiaogang, LI Bing. Piecewise linear Tobit regression model estimation based on kernel function method[J]. Journal of Shandong University(Natural Science), 2020, 55(6):1-9. [13] MUGGEO V M R. Estimating regression models with unknown break-points[J]. Statistics in Medicine, 2003, 22(19):3055-3071. [14] YAN Yanyang, ZHANG Feipeng, ZHOU Xiaoying. A note on estimating the bent line quantile regression model[J]. Computational Statistics, 2017, 32(2):661-630. [15] MUGGEO V M R, ADELFIO G. Efficient change point detection for genomic sequences of continuous measurements[J]. Bioinformatics, 2011, 27(2):161-166. [16] 龙振环,张飞鹏,周小英. 带多个变点的逐段连续线性分位数回归模型及应用[J]. 数量经济技术经济研究,2017,34(8):150-161. LONG Zhenhuan, ZHANG Feipeng, ZHOU Xiaoying. A continuous piecewise linear quantile regression with multiple change points[J]. The Journal of Quantitative and Technical Economics, 2017, 34(8):150-161. [17] ZHONG Wei, WAN Chuang, ZHANG Wenyang. Estimation and inference for multi-kink quantile regression[J]. Journal of Business and Economic Statistics, 2021, 40(3):1123-1139. [18] 王小刚,李冰. 含多个结构突变的分段线性Tobit回归模型及应用[J]. 统计与决策,2021,37(19):21-25. WANG Xiaogang, LI Bing. Piecewise linear Tobit regression model with multiple change points and application[J]. Statistics and Decision, 2021, 37(19):21-25. [19] 曾毅,沈可. 中国老年人口多维度健康状况分析[J]. 中华预防医学,2010,34(2):108-114. ZENG Yi, SHEN Ke. Main dimensions of health status among the Chinese elderly[J]. Chinese Journal of Preventive Medicine, 2010, 34(2):108-114. |
[1] | Shuying WANG,Yanan ZHANG,Yunfei CHENG,Lifang ZHOU. Model averaging study with a cured group right-censored data [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(4): 108-116. |
[2] | Xiaogang WANG,Kexin FENG. Change point estimation of piecewise linear censored quantile regression model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(11): 35-44. |
[3] | SUI Yun-yun, HU Jiang-shan, MA Shu-cai, FU Yun-peng. Parameter estimation of linear exponential distribution based on truncated and censored data [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(6): 10-16. |
|