JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (3): 100-106.doi: 10.6040/j.issn.1671-9352.0.2024.051
Previous Articles Next Articles
YANG Yujie, LING Nengxiang*
CLC Number:
[1] RAMSAY J, SILVERMAN B. Functional data analysis[M]. New York: Springer, 2005. [2] FERRATY F, VIEU P. Nonparametric functional data analysis:theory and practice[M]. New York: Springer, 2006. [3] HALL P, HOROWITZ J L. Methodology and convergence rates for functional linear regression[J]. The Annals of Statistics, 2007, 35:70-91. [4] CAI T T, HALL P. Prediction in functional linear regression[J]. The Annals of Statistics, 2006, 34:2159-2179. [5] ZHANG D W, LIN X H, SOWERS M. Two-stage functional mixed models for evaluating the effect of longitudinal covariate profiles on a scalar outcome[J]. Biometrics, 2007, 63(2):351-362. [6] SHIN H. Partial functional linear regression[J]. Journal of Statistical Planning and Inference, 2009, 139:3405-3418. [7] KOENKER R, BASSETT G. Regression quantiles[J]. Econometrica, 1978, 46:33-51. [8] CARDOT H, CRAMBES C, SARDA P. Quantile regression when the covariates are functions[J]. Journal of Nonparametric Statistics, 2005, 17(7):841-856. [9] KATO K. Estimation in functional linear quantile regression[J]. The Annals of Statistics, 2012, 40:3108-3136. [10] 杜艳芳. 基于分位数回归的空气质量指数分析[D]. 兰州:兰州大学,2016. DU Yanfang. The analysis of air quality index based on quantile regression[D]. Lanzhou: Lanzhou University, 2016. [11] 孙鸣茜. 函数型数据分位数回归模型及其应用[D]. 武汉:华中科技大学,2019. SUN Mingxi. Quantile regression of functional data and its application[D]. Wuhan: Huazhong University of Science and Technology, 2019. [12] TANG Qingguo, CHENG Longsheng. Partial functional linear quantile regression[J]. Science China Mathematics, 2014, 57(12):2589-2608. [13] KRAUS D. Components and completion of partially observed functional data[J]. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 2015, 77(4):777-801. [14] 王楚. 带有缺失数据的函数型响应部分函数线性回归模型的估计与应用[D]. 南京:南京理工大学,2021. WANG Chu. Estimation andapplication of partial functional linear regression model for function response with missing data[D]. Nanjing: Nanjing University of Science and Technology, 2021. [15] KNEIP A, LIEBL D. On the optimal reconstruction of partially observed functional data[J]. The Annals of Statistics, 2020, 4:1692-1717. [16] XIAO Juxia, XIE Tianfa, ZHANG Zhongzhan. Estimation in partially observed functional linear quantile regression[J]. Journal of Systems Science and Complexity, 2020, 35:313-341. [17] CRAMBES C, DAAYEB C, GANNOUN A, et al. Functional linear model with partially observed covariate and missing values in the response[J]. Journal of Nonparametric Statistics, 2023, 35(1):172-197. [18] BOSQ D. Linear processes in function spaces: theory and applications[M]. New York: Springer Science and Business Media, 2000. |
[1] | WU Qi-ran, ZHOU Li-kai, SUN Jin-jin, WANG Nian-ge, YU Qun-fang. Research on characteristics of air quality change in Zhejiang Province——based on functional data analysis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(7): 53-64. |
[2] | Xiang-wen LIAO,Yang XU,Jing-jing WEI,Ding-da YANG,Guo-long CHEN. Review spam detection based on the two-level stacking classification model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(7): 57-67. |
[3] | SHAO Wei1, ZHU Li-ping2, LIU Fu-Guo2, WANG Qiu-Ping2. Sparse principal component analysis for symmetric matrix and application in sufficient dimension reduction [J]. J4, 2012, 47(4): 116-120. |
[4] | WANG De-liang, LI Ke, LU Li-ling. Analysis of habitat characteristics of Tanichthys albonubes in Shimen National Forest Park [J]. J4, 2012, 47(3): 1-4. |
[5] | ZHOU Juan1, WANG Ren-qing2, GUO Wei-hua2*, WANG Qiang2, WANG Wei2, . Soil geochemical elements in the Yutai high quality rice base [J]. J4, 2012, 47(3): 5-9. |
[6] | ZHU Shi-wei,SAI Ying . The prediction model of financial distress of Chinese listed corporations based on a hybrid RPR model [J]. J4, 2008, 43(11): 48-53 . |
[7] | YANG Shao-hua,LIN Pan,PAN Chen . Performance improvement of face recognition based on kernel principal component analysis using wavelet transform [J]. J4, 2007, 42(9): 96-100 . |
|