JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (3): 22-32.doi: 10.6040/j.issn.1671-9352.0.2024.105
• Financial Mathematics • Previous Articles Next Articles
DU Huiyuan, FAN Xiaoming*
CLC Number:
[1] BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3):637-654. [2] HE Xinjiang. A closed-form pricing formula for European options under the Heston model with stochastic interest rate[J]. Journal of Computational and Applied Mathematics, 2018, 335:323-333. [3] PILLAY E, OHARA G J. FFT based option pricing under a mean reverting process with stochastic volatility and jumps[J]. Computational Applied Mathematics, 2011, 235(12):3378-3384. [4] JOHNSON H, STULZ R. The pricing of options with default risk[J]. Journal of Finance, 1987, 42(2):267-280. [5] TIAN Lihui, WANG Guanying, WANG Xingchun, et al. Pricing vulnerable options with correlated credit risk under jump-diffusion processes[J]. Journal of Futures Markets, 2014, 34(10):957-979. [6] JING Bo, LI Shenghong, MA Yong. Pricing VIX options with volatility clustering[J]. Journal of Futures Markets, 2020, 40(6):928-944. [7] CHEN Li, MA Yong, XIAO Weilin. Pricing defaultable bonds under Hawkes jump-diffusion processes[J]. Finance Research Letters, 2022, 47:102738. [8] MA Y, PAN D, SHRESTHA K, et al. Pricing and hedging foreign equity options under Hawkes jump-diffusion processes[J]. Physica A:Statistical Mechanics and its Applications, 2020, 537:122645. [9] HAMILTON J D. A new approach to the economic analysis of nonstationary time series and the business cycle[J]. Econometrica, 1989, 57(2):357. [10] XIE Yurong, DENG Guohe. Vulnerable European option pricing in a Markov regime-switching Heston model with stochastic interest rate[J]. Chaos, Solitons & Fractals, 2022, 156:111896. [11] HAN Miao, SONG Xuefeng, NIU Huawei, et al. Pricing vulnerable options with market prices of common jump risks under regime-switching models[J]. Discrete Dynamics in Nature and Society, 2018, 2018:8545841. [12] FAN K, SHEN Y, SIU K T, et al. An FFT approach for option pricing under a regime-switching stochastic interest rate model[J]. Communications in Statistics: Theory and Methods, 2016, 46(11):5292-5310. [13] ELLIOTT R J, AGGOUN L, MOORE J B. Hidden Markov models: estimation and control[M]. New York: Springer, 1994. [14] 马勇,吕建平. Hawkes跳扩散模型下的脆弱期权定价[J]. 系统工程学报, 2022, 37(5):605-616. MA Yong, LYU Jianping. Vulnerable option pricing under Hawkes jump diffusion model[J]. Journal of Systems Engineering, 2022, 37(5):605-616. [15] DUFFIE D, PAN J, SINGLETON K. Transform analysis and asset pricing for affine jump-diffusions[J]. Econometrica, 2000, 68(6):1343-1376. [16] ELLIOTT J R, NISHIDE K, OSAKWE U C. Heston-type stochastic volatility with a Markov switching regime[J]. Journal of Futures Markets, 2016, 36(9):902-919. [17] TENG L, EHRHARDT M, GÜNTHER M. On the Heston model with stochastic correlation[J]. International Journal of Theoretical and Applied Finance, 2016, 19(6):1-30. [18] BUFFINGTON J, ELLIOTT RJ. American options with regime switching[J]. International Journal of Theoretical and Applied Finance, 2002, 5(5):497-514. |
[1] | CHEN Xiang-li. Vulnerable options fractional pricing model under corporate value stucture [J]. J4, 2010, 45(11): 109-114. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 42
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 65
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|