JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (3): 68-73.doi: 10.6040/j.issn.1671-9352.1.2016.030
Previous Articles Next Articles
ZHUANG Zheng-mao1, CHEN Xing-shu2*, SHAO Guo-lin1, YE Xiao-ming1
CLC Number:
[1] 郭春. 基于数据挖掘的网络入侵检测关键技术研究[D]. 北京邮电大学, 2014. GUO Chun. Research on key technologies of network intrusion detection based on data mining[D]. Beijing University of Posts and Telecommunications, 2014. [2] 诸葛建伟, 王大为, 陈昱,等. 基于D-S证据理论的网络异常检测方法[J]. 软件学报, 2006, 17(3):463-471. ZHUGE Jianwei, WANG Dawei, CHEN Yu, et al. A network anomaly detector based on the D-S evidence theory[J]. Journal of Software, 2006, 17(3):463-471. [3] 周颖杰, 胡光岷, 贺伟淞. 基于时间序列图挖掘的网络流量异常检测[J]. 计算机科学, 2009, 36(1):46-50. ZHOU Yingjie, HU Guangmin, HE Weisong. Network traffic anomaly detection based on data mining in time-series graph[J]. Computer Science, 2009, 36(1):46-50. [4] 王硕, 赵荣彩, 单征. 基于FSS时间序列分析的DDoS检测算法[J]. 计算机工程, 2012, 38(12):13-16. WANG Shuo, ZHAO Rongcai, SHAN Zheng. Distributed denial of service detection algorithm based on FSS time Series Analysis[J]. Computer Engineering, 2012, 38(12):13-16. [5] 钱叶魁, 陈鸣, 叶立新,等. 基于多尺度主成分分析的全网络异常检测方法[J]. 软件学报, 2012, 23(2):361-377. QIAN Yekui, CHEN Ming, YE Lixin, et al. Network-wide anomaly detection method based on multiscale principal component analysis[J]. Journal of Software, 2012, 23(2):361-377. [6] 陈烨, 刘渊. 基于参数优化 SVM 融合的网络异常检测[J]. 计算机应用与软件, 2013(9):39-43. CHEN Ye, LIU Yuan. Network anomaly detection based on papameters oprimised SVM fusion[J]. Computer Applications and Software, 2013(9):39-43. [7] 贺成彬. 基于张量分析的网络异常检测[D]. 太原:太原科技大学, 2014. HE Chengbin. Network anomaly detection technology based on tensor analysis [D]. Taiyuan University of Science & Technology, 2014. [8] 贺亮, 褚衍杰, 韩杰思. 基于通联累积量的动态网络异常检测算法[J]. 通信技术, 2015(12):1400-1405. HE Liang, CHU Yanjie, HAN Jiesi. Anomaly detection algorithm based on communicating cumulant in dynamic network [J]. Communications Technology, 2015(12):1400-1405. [9] 李柏楠, 钱叶魁, 罗兴国. 基于往返时延矩阵子空间的网络异常检测方法[J]. 南京理工大学学报, 2015, 39(2):215-224. LI Bainan, QIAN Yekui, LUO Xingguo. Network anomaly detection method based on RTT matrix subspace[J]. Journal of Nanjing University of Science and Technology, 2015, 39(2):215-224. [10] 刘敬, 谷利泽, 钮心忻,等. 基于单分类支持向量机和主动学习的网络异常检测研究[J]. 通信学报, 2015, 36(11):136-146. LIU Jing, GU Lize, NIU Xinxin, et al. Research on network anomaly detection based on one-class SVM and active learning[J]. Journal on Communications, 2015, 36(11):136-146. [11] 孙腾. 基于扩散小波的网络流量异常检测研究[D]. 北京:北京交通大学, 2015. SUN Teng. Study on anomaly detection of network traffic based on diffusion wavelet[D]. Beijing Jiaotong Universiry, 2015. [12] YE Xiaoming, CHEN Xingshu, WANG Haizhou, et al. An anomalous behavior detection model in cloud computing [J]. Tsinghua Science and Technology, 2016, 21(3):322-332. [13] Macqueen J. Some methods for classifications and analysis of multivariate observations[J]. Berkeley University of California Press, 1967, 1:281-297. |
[1] | YE Xiao-ming, CHEN Xing-shu, YANG Li, WANG Wen-xian, ZHU Yi, SHAO Guo-lin, LIANG Gang. Anomaly detection model of host group based on graph-evolution events [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 1-11. |
[2] | LI Yang, CHENG Xiong, TONG Yan, CHEN Wei, QIN Tao, ZHANG Jian, XU Ming-di. Method for threaten users mining based on traffic statistic characteristics [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(1): 83-88. |
[3] | DU Rui-ying, YANG Yong, CHEN Jing, WANG Chi-heng. An efficient network traffic classification scheme based on similarity [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(09): 109-114. |
[4] | GUO Chen1, LIANG Jia-rong2, LUO Chao3, PENG Shuo1. Research on the DC algorithm for an anomaly detection system based on TLR [J]. J4, 2012, 47(5): 93-97. |
[5] | CHANG Jian-long,YAN Ying,GONG Xue-qing,DAI Dai,ZHOU Ao-ying . SMART: a system for online monitoring large volumes of network traffic [J]. J4, 2007, 42(11): 27-31 . |
[6] | FENG Hai-liang,LIN Qin-jia,CHEN Di and CHEN Chun-xiao . Synthesis and analysis of network traffic based on multifractal wavelet model with different vanish moments [J]. J4, 2006, 41(2): 125-130 . |
|