JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (3): 30-35.doi: 10.6040/j.issn.1671-9352.1.2017.012
Previous Articles Next Articles
PANG Bo*, LIU Yuan-chao
CLC Number:
[1] NALLAPATI R. Discriminative models for information retrieval[C] // Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval. USA: ACM, 2004: 64-71. [2] HERBRICH R, GRAEPEL T, OBERMAYER K. Support vector learning for ordinal regression[C] // Artificial Neural Networks, 1999. ICANN 99. Ninth International Conference on. Ottawa: 2002: 97-102. [3] CAO Zhe, QIN Tao, LIU Tieyan, et al. Learning to rank: from pairwise approach to listwise approach[C] // Proceedings of the 24th international conference on Machine learning. Corvallis: ICML, 2007: 129-136. [4] QIN Tao, ZHANG Xudong, TSAI Mingfeng, et al. Query-level loss functions for information retrieval[J]. Information Processing & Management, 2008, 44(2):838-855. [5] ALMARWANI N, DIAB M. GW_QA at SemEval-2017 Task 3: question answer re-ranking on arabic fora[C] // Proceedings of the 11th International Workshop on Semantic Evaluation(SemEval-2017). Vancouver: ACL, 2017: 344-348. [6] YU Lei, HERMANN K M, BLUNSOM P, et al. Deep learning for answer sentence selection[J]. Computer Science, 2014, 2014:1-10 [7] ARAKI J, CALLAN J. An annotation similarity model in passage ranking for historical fact validation[C] // Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval. USA: ACM, 2014: 1111-1114. [8] SEVERYN A, MOSCHITTI A. Learning to rank short text pairs with convolutional deep neural networks[C] // Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. USA: ACM, 2015: 373-382. [9] ZHOU Xiaoqiang, HU Baotian, CHEN Qingcai, et al. Answer sequence learning with neural networks for answer selection in community question answering[J]. In Proceedings of the ACL-IJCNLP. Beijing: ACL, 2015: 713-718. [10] FU Jian, QIU Xipeng, HUANG Xuanjing. Convolutional deep neural networks for document-based question answering[C] // International Conference on Computer Processing of Oriental Languages. Springer International Publishing. Berlin: Springer, Cham, 2016: 790-797. [11] TYMOSHENKO K, BONADIMAN D, MOSCHITTI A. Learning to rank non-factoid answers: Comment selection in web forums[C] // Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. USA: ACM, 2016: 2049-2052. [12] WANG Bingning, LIU Kang, ZHAO Jun. Inner attention based recurrent neural networks for answer selection[C] // Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin: ACL, 2016: 1288-1297. [13] SEVERYN A, MOSCHITTI A. Modeling relational information in question-answer pairs with convolutional neural networks[J]. USA, ARXIV, 2016, 2016: 1-10. [14] DERIU J M, CIELIEBAK M. SwissAlps at SemEval-2017 task 3: Attention-based convolutional neural network for community question answering[C] // Proceedings of the 11th International Workshop on Semantic Evaluation. Vancouver, Canada, SemEval. 2017, 17: 334-338. [15] NIE Yuanping, HAN Yi, HUANG Jiuming, et al. Attention-based encoder-decoder model for answer selection in question answering[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(4):535-544. [16] TAY Y, PHAN M C, TUAN L A, et al. Learning to rank question answer pairs with holographic dual LSTM architecture[C] // In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. Tokyo: ACM 2017, 695-704. [17] OTHMAN N, FAIZ R. A multi-lingual approach to improve passage retrieval for automatic question answering[C] // International Conference on Applications of Natural Language to Information Systems. Berlin: Springer International Publishing, 2016: 127-139. [18] RAFFEL C, ELLIS D P W. Feed-forward networks with attention can solve some long-term memory problems[J]. arXiv, 2016(2016):1-6. [19] SRIVASTAVA N, HINTON G E, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1):1929-1958. |
[1] | LIU Ming-ming, ZHANG Min-qing, LIU Jia, GAO Pei-xian. Steganalysis method based on shallow convolution neural network [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 63-70. |
[2] | MENG Ye, ZHANG Peng, SONG Da-wei. Study on collection statistics for parameter selection in pseudo relevance feedback [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(7): 18-22. |
[3] | LIU Ming, ZAN Hong-ying, YUAN Hui-bin. Key sentiment sentence prediction using SVM and RNN [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(11): 68-73. |
[4] | XU Jian-min1,3, CHEN Zhen-ya2, CUI Yan3. Query expansion method based on the user interest and term relation [J]. J4, 2011, 46(5): 49-53. |
[5] | CHEN Jun,CHEN Zhu-min . Improved Shark-Search algorithm based on page segmentation [J]. J4, 2007, 42(9): 62-66 . |
|