JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (12): 22-30.doi: 10.6040/j.issn.1671-9352.1.2022.8766

Previous Articles     Next Articles

Label guided multi-scale graph neural network for protein-protein interactions prediction

Xinsheng WANG(),Xiaofei ZHU*(),Chenghong LI   

  1. School of Computer Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
  • Received:2022-09-29 Online:2023-12-20 Published:2023-12-19
  • Contact: Xiaofei ZHU E-mail:wxscc0610@2020.cqut.edu.cn;zxf@cqut.edu.cn

Abstract:

A protein-protein interactions prediction method based on label guided multi-scale graph neural network is proposed, which not only enhances the representation ability of data, but also introduces label information to guide learning. Firstly, the multi-scale graph representation is obtained by graph data augmentation, and the multi-scale graph representation is input into graph neural network to obtain multi-scale protein representation, and comparative learning is introduced to further improve the protein characterization ability. Secondly, the self-learning label relation graph is constructed to learn the relationship between labels and obtain the feature representation of labels. Finally, the prediction of protein-protein interactions is guided by the feature representation of labels. Experiments are carried out on three public datasets. Compared with the optimal benchmark method, the proposed method has better performance. Specifically, compared with the best baseline method, the micro-F1 scores on the three datasets SHS27k, SHS148k and STRING increase by 2.01%, 0.94% and 0.93% respectively.

Key words: protein-protein interactions, graph neural network, graph data augmentation, graph relation graph

CLC Number: 

  • TP391

Fig.1

Framework of model LGMG-PPI"

Table 1

The statistics of datasets"

数据集 节点数 连边数 氨基酸数(Avg) 标签数
SHS27k 1 690 7 624 571 7
SHS148k 5 189 44 488 597 7
STRING 15 335 593 397 604 7

Table 2

The micro-F1 of different models on different datasets  单位: %"

方法 SHS27k SHS148k STRING
SVM 75.35±1.05 80.55±0.23
RF 78.45±0.88 82.10±0.20 88.91±0.08
LR 71.55±0.93 67.00±0.07 67.74±0.16
DPPI 73.99±5.04 77.48±1.39 94.85±0.13
DNN-PPI 77.89±4.97 88.49±0.48 83.08±0.11
PIPR 83.31±0.75 90.05±2.59 94.43±0.10
GNN-PPI 87.91±0.39 92.26±0.10 95.43±0.10
LGMG-PPI 89.68±0.10 93.13±0.03 96.32±0.04

Table 3

The ablation study  单位: %"

方法 SHS27k SHS148k STRING
LGMG-PPI 89.68±0.10 93.13±0.03 96.32±0.04
w/o MS-GDA($\mathscr{T}_{1}$) 89.35±0.05 93.05±0.11 96.14±0.17
w/o MS-GDA($\mathscr{T}_{2}$) 89.23±0.10 92.95±0.04 96.28±0.17
w/o MS-GDA 88.97±0.09 92.80±0.14 95.92±0.03
w/o SL-LRG 89.39±0.12 92.87±0.04 96.04±0.02

Fig.2

Verify the validity of topology structure of SL-LRG"

Fig.3

Verify the validity of node feature of SL-LRG"

1 STELZL U , WORM U , LALOWSKI M , et al.A human protein-protein interaction network: a resource for annotating the proteome[J].Cell,2005,122(6):957-968.
doi: 10.1016/j.cell.2005.08.029
2 PETTA I , LIEVENS S , LIBERT C , et al.Modulation of protein-protein interactions for the development of novel therapeutics[J].Molecular Therapy,2016,24(4):707-718.
doi: 10.1038/mt.2015.214
3 SKRABANEK L , SAINI H K , BADER G D , et al.Computational prediction of protein-protein interactions[J].Molecular Biotechnology,2008,38(1):1-17.
doi: 10.1007/s12033-007-0069-2
4 FIELDS S , STERNGLANZ R .The two-hybrid system: an assay for protein-protein interactions[J].Trends in Genetics,1994,10(8):286-292.
doi: 10.1016/0168-9525(90)90012-U
5 TONG A H Y , DREES B , NARDELLI G , et al.A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules[J].Science,2002,295(5553):321-324.
doi: 10.1126/science.1064987
6 HO Y , GRUHLER A , HEILBUT A , et al.Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry[J].Nature,2002,415(6868):180-183.
doi: 10.1038/415180a
7 RAO V S , SRINIVAS K , SUJINI G N , et al.Protein-protein interaction detection: methods and analysis[J].International Journal of Proteomics,2014,2014(1):147648-147659.
8 HUANG H , BADER J S .Precision and recall estimates for two-hybrid screens[J].Bioinformatics,2009,25(3):372-378.
doi: 10.1093/bioinformatics/btn640
9 KRIZHEVSKY A , SUTSKEVER I , HINTON G E .Imagenet classification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90.
doi: 10.1145/3065386
10 HOCHREITER S , SCHMIDHUBER J .Long short-term memory[J].Neural Computation,1997,9(8):1735-1780.
doi: 10.1162/neco.1997.9.8.1735
11 CHEN M , JU C J T , ZHOU G , et al.Multifaceted protein-protein interaction prediction based on Siamese residual RCNN[J].Bioinformatics,2019,35(14):i305-i314.
doi: 10.1093/bioinformatics/btz328
12 LV G F, HU Z Q, BI Y G et al. Learning unknown from correlations: graph neural network for inter-novel-protein interaction prediction[C]//Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. San Francisco: Margan Kaufmann, 2021: 3677-3683.
13 BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[C]//International Conference on Learning Representations. New Orleans: OpenReview. net, 2014.
14 DEFFERRARD M , BRESSON X , VANDERGHEYNST P .Convolutional neural networks on graphs with fast localized spectral filtering[J].Advances in Neural Information Processing Systems,2016,29(12):3844-3852.
15 VELICKOVIC P , CUCURULL G , CASANOVA A , et al.Graph attention networks[J].Stat,2017,1050(20):10.
16 XU K, HU W H, LESKOVEC J, et al. How powerful are graph neural networks?[C]//International Conference on Learning Representations. New Orleans: OpenReview. net, 2019.
17 YOU Y , CHEN T , SUI Y , et al.Graph contrastive learning with augmentations[J].Advances in Neural Information Processing Systems,2020,33,5812-5823.
18 CHEN Z M, WEI X S, WANG P, et al. Multi-label image recognition with graph convolutional networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5177-5186.
19 DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//NAACL. Minneapolis: Association for Computational Linguistics, 2019: 4171-4186.
20 SZKLARCZYK D , GABLE A L , LYON D , et al.STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J].Nucleic Acids Research,2019,47(D1):D607-D613.
doi: 10.1093/nar/gky1131
21 GUO Y , YU L , WEN Z , et al.Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences[J].Nucleic Acids Research,2008,36(9):3025-3030.
doi: 10.1093/nar/gkn159
22 SILBERBERG Y , KUPIEC M , SHARAN R .A method for predicting protein-protein interaction types[J].PLoS One,2014,9(3):e90904.
23 WONG L, YOU Z H, LI S, et al. Detection of protein-protein interactions from amino acid sequences using a rotation forest model with a novel PR-LPQ descriptor[C]//International Conference on Intelligent Computing. Fuzhou: Springer, 2015: 713-720.
24 HASHEMIFAR S , NEYSHABUR B , KHAN A A , et al.Predicting protein-protein interactions through sequence-based deep learning[J].Bioinformatics,2018,34(17):i802-i810.
25 LI H , GONG X J , YU H , et al.Deep neural network based predictions of protein interactions using primary sequences[J].Molecules,2018,23(8):1923.
[1] ZHANG Bin-yan, ZHU Xiao-fei, XIAO Zhao-hui, HUANG Xian-ying, WU Jie. Short text classification based on semi-supervised graph neural network [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(5): 57-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .
[2] HE Hai-lun, CHEN Xiu-lan* . Circular dichroism detection of the effects of denaturants and buffers on the conformation of cold-adapted protease MCP-01 and  mesophilic protease BP01[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 23 -29 .
[3] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .
[4] SUN Xiao-ting1, JIN Lan2*. Application of DOSY in oligosaccharide mixture analysis[J]. J4, 2013, 48(1): 43 -45 .
[5] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .
[6] YANG Lun, XU Zheng-gang, WANG Hui*, CHEN Qi-mei, CHEN Wei, HU Yan-xia, SHI Yuan, ZHU Hong-lei, ZENG Yong-qing*. Silence of PID1 gene expression using RNA interference in C2C12 cell line[J]. J4, 2013, 48(1): 36 -42 .
[7] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .
[8] YANG Ying, JIANG Long*, SUO Xin-li. Choquet integral representation of premium functional and related properties on capacity space[J]. J4, 2013, 48(1): 78 -82 .
[9] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[10] DONG Wei-wei. A new method of DEA efficiency ranking for decision making units with independent subsystems[J]. J4, 2013, 48(1): 89 -92 .