JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (3): 107-117.doi: 10.6040/j.issn.1671-9352.2.2023.027

Previous Articles     Next Articles

The ML-KNN method based on attribute weighting

Xin WEN1(),Deyu LI1,2,*()   

  1. 1. School of Computer and Information Technology, Shanxi University, Taiyuan 030006, Shanxi, China
    2. Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Shanxi University, Taiyuan 030006, Shanxi, China
  • Received:2023-05-29 Online:2024-03-20 Published:2024-03-06
  • Contact: Deyu LI E-mail:1368661957@qq.com;lidysxu@163.com

Abstract:

A ML-KNN method based on attribute weighting has been proposed. To be specific, we first identify samples from the non-positive regions of decision classes by means of the variable precision neighborhood rough set model with respect to each label and construct the heterogeneous sample pairs. Then, the significance of different attributes for classification is evaluated based on their discernibility for the heterogeneous sample pairs. Finally, the weighted distances between samples are calculated in order to obtain the nearest neighbor distributions of samples. At the same time, based on the principle of maximizing the posterior probability, the multi-label classification is implemented. Further, the experimental results on ten public multi-label data sets verify the effectiveness of the proposed method.

Key words: multi-label classification, attribute significance, neighborhood rough set, uncertainty of classification, heterogeneous sample pair

CLC Number: 

  • TP391

Table 1

Description of datasets"

Number Data set Sample Attribute Label Domain
1 GpositivePseAAC 519 44 0 4 biology
2 Emotions 593 72 6 music
3 Medical 978 1 449 45 text
4 Water-quality 1 060 16 14 chemistry
5 Image 2 000 294 5 image
6 Scene 2 407 294 6 image
7 Yeast 2 417 103 14 biology
8 Business 5 000 438 30 text
9 Yelp 10 810 671 5 text
10 Mediamill 43 907 120 101 video

Table 2

The variation range of the neighborhood parameter δ"

Data set δ
GpositivePseAAC 4.00~4.35
Emotions 1.30~1.55
Medical 2.80~3.05
Water-quality 1.50~1.75
Image 4.30~4.60
Scene 2.75~3.00
Yeast 1.25~1.50
Business 1.70~1.95
Yelp 6.00~6.25
Mediamill 2.00~2.35

Fig.1

The classification performance of NRS_MLKNN influenced by different parameters in GpositivePseAAC dataset"

Table 3

Classification performance of seven algorithms on GpositivePseAAC dataset"

Method HL↓ RL↓ OE↓ CV↓ AP↑
MLRS 0.163 8±0.030 3 0.160 6±0.024 1 0.323 7±0.046 7 0.487 5±0.063 1 0.813 7±0.026 1
LPLC 0.164 6±0.024 2 0.162 0±0.036 7 0.285 2±0.059 4 0.464 4±0.107 1 0.824 8±0.036 5
ML-KNN 0.155 1±0.026 7 0.157 2±0.029 6 0.310 2±0.059 6 0.479 9±0.084 4 0.819 5±0.033 6
Stacked_KNN 0.148 3±0.035 2 0.159 1±0.037 9 0.314 0±0.061 3 0.487 5±0.113 6 0.817 5±0.037 8
LAMLKNN 0.154 1±0.029 0 0.149 3±0.025 7 0.292 9±0.055 7 0.454 7±0.073 7 0.829 5±0.028 9
ML_RKNN 0.248 1±0.028 5 0.583 3±0.077 2 0.233 3±0.044 1 0.977 2±0.147 6 0.675 7±0.045 4
NRS_MLKNN 0.147 4±0.029 4 0.146 9±0.030 2 0.289 0±0.064 4 0.449 0±0.087 4 0.831 6±0.035 3

Table 4

Classification performance of seven algorithms on Emotions dataset"

Method HL↓ RL↓ OE↓ CV↓ AP↑
MLRS 0.193 0±0.016 0 0.169 6±0.023 9 0.263 1±0.055 7 1.804 2±0.146 7 0.801 4±0.027 4
LPLC 0.202 5±0.022 6 0.159 5±0.026 1 0.273 1±0.040 8 1.768 4±0.160 7 0.802 3±0.023 5
ML-KNN 0.192 5±0.017 2 0.162 1±0.017 3 0.266 6±0.030 5 1.797 5±0.088 5 0.799 6±0.015 5
Stacked_KNN 0.198 6±0.024 1 0.172 7±0.026 8 0.268 2±0.054 5 1.848 2±0.155 4 0.793 5±0.031 9
LAMLKNN 0.195 0±0.014 8 0.159 5±0.023 3 0.283 2±0.057 4 1.762 0±0.134 2 0.800 3±0.026 5
ML_RKNN 0.323 2±0.032 4 0.339 9±0.059 4 0.379 4±0.052 6 2.664 3±0.334 6 0.686 5±0.040 4
NRS_MLKNN 0.195 0±0.012 1 0.159 2±0.012 3 0.263 2±0.036 3 1.777 3±0.081 5 0.803 5±0.014 7

Table 5

Classification performance of seven algorithms on Medical dataset"

Method HL↓ RL↓ OE↓ CV↓ AP↑
MLRS 0.018 7±0.002 3 0.104 3±0.024 7 0.338 5±0.044 1 3.615 7±1.078 1 0.745 6±0.033 9
LPLC 0.018 8±0.00 2 0.079 5±0.015 9 0.283 3±0.036 7 4.401 5±1.092 2 0.757 8±0.037 8
ML-KNN 0.015 6±0.002 1 0.042 0±0.011 4 0.249 6±0.041 7 2.745 1±0.818 7 0.808 3±0.030 5
Stacked_KNN 0.01 5±0.002 1 0.057 6±0.015 5 0.248 5±0.037 3 3.551 4±1.052 9 0.791 0±0.027 2
LAMLKNN 0.015 9±0.002 1 0.037 4±0.010 5 0.244 5±0.042 2 2.225 2±0.697 5 0.816 5±0.029 4
ML_RKNN 0.052 2±0.006 7 0.431 0±0.048 3 0.273 0±0.033 3 13.564 3±2.00 4 0.522 4±0.033 9
NRS_MLKNN 0.014 0±0.002 2 0.042 4±0.011 2 0.220 9±0.032 0 2.795 5±0.787 2 0.820 4±0.024 0

Table 6

Classification performance of seven algorithms on Water-quality dataset"

Method HL↓ RL↓ OE↓ CV↓ AP↑
MLRS 0.340 8±0.009 8 0.297 8±0.016 1 0.336 9±0.050 4 9.174 5±0.206 0 0.645 7±0.022 6
LPLC 0.316 3±0.009 1 0.263 4±0.015 8 0.284 6±0.042 4 8.889 6±0.220 1 0.684 5±0.019 2
ML-KNN 0.292 0±0.011 2 0.259 4±0.013 5 0.293 2±0.052 4 8.776 4±0.241 2 0.689 8±0.020 2
Stacked_KNN 0.297 1±0.009 3 0.266 7±0.016 7 0.319 7±0.047 6 8.837 7±0.193 7 0.677 5±0.020 1
LAMLKNN 0.294 7±0.008 9 0.261 8±0.014 0 0.279 0±0.033 7 8.853 8±0.278 7 0.688 3±0.018 9
ML_RKNN 0.404 4±0.020 5 0.385 3±0.017 2 0.423 2±0.041 4 10.317 9±0.241 2 0.590 0±0.018 2
NRS_MLKNN 0.290 4±0.009 7 0.259 7±0.016 4 0.279 9±0.046 2 8.776 4±0.256 9 0.691 5±0.022 5

Table 7

Classification performance of seven algorithms on Image dataset"

Method HL↓ RL↓ OE↓ CV↓ AP↑
MLRS 0.175 4±0.014 7 0.186 8±0.019 6 0.333 5±0.034 1 0.978 0±0.103 8 0.786 2±0.020 4
LPLC 0.178 4±0.014 2 0.196 8±0.020 7 0.330 0±0.028 7 0.999 5±0.099 3 0.780 8±0.017 1
ML-KNN 0.170 1±0.014 1 0.176 5±0.020 2 0.319 5±0.033 2 0.978 0±0.103 4 0.790 0±0.020 3
Stacked_KNN 0.176 5±0.016 2 0.188 0±0.023 2 0.333 0±0.030 0 1.018 0±0.115 7 0.780 6±0.022 1
LAMLKNN 0.170 8±0.015 3 0.177 2±0.020 4 0.321 0±0.032 3 0.983 0±0.112 8 0.788 5±0.020 8
ML_RKNN 0.287 1±0.013 9 0.317 4±0.025 9 0.378 0±0.030 3 1.346 5±0.096 4 0.716 7±0.020 3
NRS_MLKNN 0.171 7±0.015 7 0.174 7±0.021 6 0.320 0±0.036 1 0.968 5±0.112 1 0.791 5±0.021 9

Table 8

Classification performance of seven algorithms on Scene dataset"

Method HL↓ RL↓ OE↓ CV↓ AP↑
MLRS 0.092 3±0.006 1 0.099 2±0.011 5 0.253 0±0.017 1 0.539 3±0.064 4 0.848 6±0.011 7
LPLC 0.096 5±0.006 5 0.090 8±0.010 6 0.250 5±0.021 8 0.519 8±0.062 6 0.847 0±0.013 1
ML-KNN 0.085 2±0.008 2 0.076 8±0.009 1 0.226 0±0.015 9 0.470 7±0.059 3 0.866 5±0.009 9
Stacked_KNN 0.087 9±0.005 5 0.085 3±0.008 6 0.232 2±0.013 8 0.515 6±0.056 8 0.859 1±0.008 6
LAMLKNN 0.085 5±0.006 7 0.074 0±0.008 7 0.225 2±0.011 8 0.455 8±0.052 6 0.867 8±0.008 4
ML_RKNN 0.164 9±0.008 9 0.254 7±0.031 3 0.286 2±0.030 4 1.108 8±0.108 2 0.761 1±0.020 9
NRS_MLKNN 0.084 7±0.006 4 0.075 4±0.009 4 0.220 2±0.015 4 0.463 7±0.061 8 0.869 5±0.010 4

Table 9

Classification performance of seven algorithms on Yeast dataset"

Method HL↓ RL↓ OE↓ CV↓ AP↑
MLRS 0.204 4±0.009 0 0.181 5±0.009 0 0.240 0±0.020 6 6.391 6±0.213 2 0.748 2±0.013 7
LPLC 0.204 0±0.012 5 0.168 9±0.009 7 0.229 2±0.029 5 6.311 6±0.187 1 0.762 4±0.018 4
ML-KNN 0.192 7±0.006 6 0.164 3±0.008 7 0.230 5±0.026 0 6.202 4±0.168 9 0.765 8±0.013 7
Stacked_KNN 0.198 5±0.009 9 0.179 3±0.009 2 0.254 9±0.030 3 6.509 0±0.125 7 0.749 1±0.017 1
LAMLKNN 0.193 8±0.007 0 0.165 1±0.008 4 0.225 9±0.022 1 6.222 7±0.153 2 0.765 1±0.013 1
ML_RKNN 0.375 9±0.018 2 0.381 3±0.021 1 0.467 4±0.034 7 9.080 2±0.218 8 0.575 1±0.021 1
NRS_MLKNN 0.192 8±0.006 6 0.163 4±0.008 3 0.227 6±0.021 8 6.196 2±0.164 5 0.767 7±0.013 3

Table 10

Classification performance of seven algorithms on Business dataset"

Method HL↓ RL↓ OE↓ CV↓ AP↑
MLRS 0.027 7±0.001 7 0.117 7±0.013 6 0.125 6±0.019 6 4.630 6±0.443 7 0.854 4±0.016 2
LPLC 0.026 7±0.001 9 0.061 2±0.004 7 0.124 6±0.021 0 3.393 0±0.235 9 0.862 6±0.015 9
ML-KNN 0.026 9±0.001 7 0.040 0±0.004 6 0.119 4±0.017 1 2.255 2±0.171 4 0.879 1±0.013 1
Stacked_KNN 0.026 1±0.001 3 0.038 7±0.003 2 0.109 6±0.013 4 2.247 8±0.148 0 0.883 4±0.009 5
LAMLKNN 0.026 8±0.001 8 0.040 1±0.004 6 0.119 2±0.019 3 2.265 4±0.171 7 0.879 3±0.013 6
ML_RKNN 0.110 9±0.003 8 0.397 8±0.023 8 0.485 4±0.029 9 13.596 4±0.845 9 0.468 3±0.014 8
NRS_MLKNN 0.026 6±0.001 7 0.038 9±0.003 6 0.115 0±0.017 3 2.217 0±0.138 1 0.881 6±0.012 0

Table 11

Classification performance of seven algorithms on Yelp dataset"

Method HL↓ RL↓ OE↓ CV↓ AP↑
MLRS 0.226 4 0.370 1 0.540 1 0.814 3 0.644 8
LPLC 0.231 4 0.331 7 0.475 8 0.830 6 0.660 9
ML-KNN 0.179 8 0.282 1 0.515 9 0.707 7 0.672 1
Stacked_KNN 0.234 5 0.335 3 0.507 6 0.890 3 0.652 6
LAMLKNN 0.180 4 0.266 8 0.500 7 0.667 3 0.683 5
ML_RKNN 0.174 8 0.936 6 0.049 0 0.954 1 0.595 6
NRS_MLKNN 0.177 4 0.276 5 0.499 3 0.693 9 0.681 8

Table 12

Classification performance of seven algorithms on Mediamill dataset"

Method HL↓ RL↓ OE↓ CV↓ AP↑
MLRS 0.032 8 0.156 7 0.168 4 28.658 7 0.676 7
LPLC 0.035 8 0.091 3 0.150 3 28.761 5 0.682 0
ML-KNN 0.031 5 0.055 0 0.147 3 18.645 6 0.703 4
Stacked_KNN 0.035 0 0.065 0 0.163 7 20.666 7 0.677 6
LAMLKNN 0.031 6 0.053 3 0.148 0 17.907 1 0.703 2
ML_RKNN 0.044 1 0.700 8 0.065 3 57.822 1 0.305 4
NRS_MLKNN 0.031 4 0.055 0 0.146 7 18.642 0 0.703 5

Fig.2

The average rank of various methods on ten data sets with respect to five evaluation metrics"

1 YU Ying , PEDRYCZ W , MIAO Duoqian . Multi-label classification by exploiting label correlations[J]. Expert Systems with Applications, 2014, 41 (6): 2989- 3004.
doi: 10.1016/j.eswa.2013.10.030
2 TSOUMAKAS G , KATAKIS I . Multi-label classification: an overview[J]. International Journal of Data Warehousing and Mining, 2007, 3 (3): 1- 13.
doi: 10.4018/jdwm.2007070101
3 ZHANG Minling , ZHOU Zhihua . A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26 (8): 1819- 1837.
doi: 10.1109/TKDE.2013.39
4 KASHEF S , NEZAMABADI-POUR H . A label-specific multi-label feature selection algorithm based on the Pareto dominance concept[J]. Pattern Recognition, 2019, 88, 654- 667.
doi: 10.1016/j.patcog.2018.12.020
5 LEE J , SEO W , PARK J H , et al. Compact feature subset-based multi-label music categorization for mobile devices[J]. Multimedia Tools and Applications, 2019, 78 (4): 4869- 4883.
doi: 10.1007/s11042-018-6100-8
6 WANG R , RIDLEY R , SU X A , et al. A novel reasoning mechanism for multi-label text classification[J]. Information Processing and Management, 2021, 58 (2): 102441.
doi: 10.1016/j.ipm.2020.102441
7 FABRIS F, FREITAS A A. Dependency network methods for hierarchical multi-label classification of gene functions[C]//2014 IEEE Symposium on Computational Intelligence and Data Mining. Piscataway: IEEE, 2014: 241-248.
8 AKHAND B, DEVI V S. Multi-label classification of discrete data[C]//IEEE International Conference on Fuzzy Systems. Piscataway: IEEE, 2013: 1-5.
9 BOUTELL M R , LUO J B , SHEN X P , et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004, 37 (9): 1757- 1771.
doi: 10.1016/j.patcog.2004.03.009
10 TSOUMAKAS G , KATAKIS I , VLAHAVAS I P . Random k-labelsets for multilabel classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23 (7): 1079- 1089.
doi: 10.1109/TKDE.2010.164
11 READ J, PFAHRINGER B, HOLMES G, et al. Classifier chains for multi-label classification[C]//Machine Learning and Knowledge Discovery in Databases. European Conference, Berlin: Springer, 2009, 5782: 254-269.
12 ZHANG Minling , ZHOU Zhihua . ML-kNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40 (7): 2038- 2048.
doi: 10.1016/j.patcog.2006.12.019
13 PAKRASHI A, NAMEE B M. Stacked-MLkNN: a stacking based improvement to multi-label k-nearest neighbours[C]//First International Workshop on Learning with Imbalanced Domains: Theory and Applications. New York: PMLR, 2017, 74: 51-63.
14 WANG Dengbao, WANG Jingyuan, HU Fei, et al. A locally adaptive multi-label k-nearest neighbor algorithm[C]//Advances in Knowledge Discovery and Data Mining-22nd Pacific-Asia Conference. Berlin: Springer, 2018, 10937: 81-93.
15 SADHUKHAN P, PALIT S. Multi-label learning on principles of reverse k-nearest neighbourhood[J/OL]. Expert Systems, 2020. DOI: 10.1111/exsy.12615.
16 段洁, 胡清华, 张灵均, 等. 基于邻域粗糙集的多标记分类特征选择算法[J]. 计算机研究与发展, 2015, 52 (1): 56- 65.
DUAN Jie , HU Qinghua , ZHANG Lingjun , et al. Feature selection for multi-label classification based on neighborhood rough sets[J]. Journal of Computer Research and Development, 2015, 52 (1): 56- 65.
17 张文修, 吴伟志, 梁吉业, 等. 粗糙集理论与方法[M]. 北京: 科学出版社, 2001: 232.
ZHANG Wenxiu , WU Weizhi , LIANG Jiye , et al. Rough sets theory and methods[M]. Beijing: Science Press, 2001: 232.
18 HU Qinghua , YU Daren , LIU Jinfu , et al. Neighborhood rough set based heterogeneous feature subset selection[J]. Information Sciences, 2008, 178 (18): 3577- 3594.
doi: 10.1016/j.ins.2008.05.024
19 张晶, 李德玉, 王素格, 等. 基于稳健模糊粗糙集模型的多标记文本分类[J]. 计算机科学, 2015, 42 (7): 270- 275.
ZHANG Jing , LI Deyu , WANG Suge , et al. Multi-label text classification based on robust fuzzy rough set model[J]. Journal of Computer Science, 2015, 42 (7): 270- 275.
20 DAI Jianhua , HU Hu , WU Weizhi , et al. Maximal-discernibility-pair-based approach to attribute reduction in fuzzy rough sets[J]. IEEE Transactions on Fuzzy Systems, 2018, 26 (4): 2174- 2187.
doi: 10.1109/TFUZZ.2017.2768044
21 QIAN Wenbin , HUANG Jintao , WANG Yinglong , et al. Label distribution feature selection for multi-label classification with rough set[J]. International Journal of Approximate Reasoning, 2021, 128, 32- 55.
doi: 10.1016/j.ijar.2020.10.002
22 温欣, 李德玉, 王素格. 一种基于邻域关系和模糊决策的特征选择方法[J]. 南京大学学报(自然科学版), 2018, 54 (4): 733- 741.
WEN Xin , LI Deyu , WANG Suge . A method for feature selection based on neighborhood relation and fuzzy decision[J]. Journal of Nanjing University (Natural Sciences), 2018, 54 (4): 733- 741.
23 HUANG Jun , LI Guorong , WANG Shuhui , et al. Multi-label classification by exploiting local positive and negative pairwise label correlation[J]. Neurocomputing, 2017, 257, 164- 174.
doi: 10.1016/j.neucom.2016.12.073
[1] Chengxiang HU,Li ZHANG,Xiaoling HUANG,Huibin WANG. Dynamic neighborhood rough sets approaches for updating knowledge while attributes generalization [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(7): 37-51.
[2] SHI Junpeng, ZHANG Yanlan. Dynamic updating algorithm of local neighborhood rough sets with the deletion of objects [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(5): 17-25.
[3] LIU Changshun, LIU Yan, SONG Jingjing, XU Taihua. Attribute reduction algorithm based on discreteness of the universe [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(5): 26-35.
[4] ZHENG Cheng-yu, WANG Xin, WANG Ting, DENG Ya-ping, YIN Tian-tian. Multi-label classification for medical text based on ALBERT-TextCNN model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(4): 21-29.
[5] SUN Lin, LIANG Na, XU Jiu-cheng. Feature selection using adaptive neighborhood mutual information and spectral clustering [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(12): 13-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, XU Xin-shun*. A new Multi-instance learning method for scene classification[J]. J4, 2010, 45(7): 108 -113 .
[2] LU Wei-jie,ZHU Chen-fu,SONG Cui and YANG Yan-li . Determination of inorganic cations in the Chinese traditional drug Yujin by capillary electrophoresis[J]. J4, 2007, 42(7): 13 -18 .
[3] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .
[4] YANG Yong-wei1, 2, HE Peng-fei2, LI Yi-jun2,3. On strict filters of BL-algebras#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 63 -67 .
[5] HAN Ya-fei, YI Wen-hui, WANG Wen-bo, WANG Yan-ping, WANG Hua-tian*. Soil bacteria diversity in continuous cropping poplar plantation#br# by high throughput sequencing[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 1 -6 .
[6] XIE Shu-tao,SONG Xiao-yanAntimicrobial activities of Trichokonins: Peptaibollike antimicrobial peptides produced by Trichoderma koningii[J]. J4, 2006, 41(6): 140 -144 .
[7] LIU Bao-cang,SHI Kai-quan . Reliablity characteristics of Srough sets[J]. J4, 2006, 41(5): 26 -29 .
[8] TANG Feng-qin1, BAI Jian-ming2. The precise large deviations for a risk model with extended negatively upper orthant dependent claim  sizes[J]. J4, 2013, 48(1): 100 -106 .
[9] QANG Yao,LIU Jian and WANG Ren-qing,* . Allee effect and its significance to small population management in nature reservation and biological invasions[J]. J4, 2007, 42(1): 76 -82 .
[10] XIE Juan-ying1, 2, ZHANG Yan1, XIE Wei-xin2, 3, GAO Xin-bo2. A novel rough K-means clustering algorithm based on the weight of density[J]. J4, 2010, 45(7): 1 -6 .