JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (3): 107-112.doi: 10.6040/j.issn.1671-9352.4.2019.192
TANG Yi-ming1,2*, ZHANG Zheng1, LU Qi-ming1
CLC Number:
[1] RATHORE P, KUMAR D, BEZDEK J C, et al. A rapid hybrid clustering algorithm for large volumes of high dimensional data[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(4):641-654. [2] HUANG Dong, WANG Changdong, LAI Jianhuang. Locally weighted ensemble clustering[J]. IEEE Transactions on Cybernetics, 2018, 48(5):1460-1473. [3] TANG Yiming, HU Xianghui, PEDRYCZ W, et al. DVPFCM: density viewpoint-induced possibilistic fuzzy C-means[J]. Neurocomputing, 2019, 329(1):407-423. [4] DING Ruxi, WANG Xueqing, SHANG Kun, et al. Sparse representation-based intuitionistic fuzzy clustering approach to find the group intra-relations and group leaders for large-scale decision making[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(3):559-573. [5] TANG Yiming, YANG Xuezhi, LIU Xiaoping et al. Double fuzzy implications-based restriction inference algorithm[J]. Iranian Journal of Fuzzy Systems, 2015, 12(6):17-40. [6] TANG Yiming, LIU Xiaoping. Differently implicational universal triple I method of(1, 2, 2)type[J]. Computers & Mathematics with Applications, 2010, 59(6):1965-1984. [7] DUNN J C. A fuzzy relative of the ISO DATA process and its use in detecting compact well-separated clusters[J]. Journal of Cybernetics and Systems, 1973, 3(3):33-57. [8] BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum Press, 1981. [9] KELLER J M, KRISHNAPURAM R. A possibilistic approach to clustering[J]. IEEE Transactions on Fuzzy Systems, 1993, 1(2):98-110. [10] ZHANG Jiangshe, LEUNG Yiuwing.Improved possibilistic C-means clustering algorithms[J]. IEEE Transaction on Fuzzy Systems, 2004, 12(2):209-217. [11] PAL N R, PAL K, KELLER J M, et al. Possibilistic fuzzy C-means clustering algorithm[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(4):107-116. [12] CHEN Songchan, ZHANG Daoqiang. Fuzzy clustering using kernel method[C] // Proc of the 2002 International Conference on Control and Automation. London: ICCA, 2002: 162-163. [13] YANG Minshen, TSAI H S. A Gaussian kernel-based fuzzy C-means algorithm with a spatial bias correction[J]. Pattern Recognition Letters, 2008, 29(12):1713-1725. [14] GONEN M, ALPAYDIN E. Localized multiple kernel learning[C] // Proc of the 25th International Conference on Machine Learning(ICML 2008). Helsinki: ACM 2008: 352-359. [15] TZORTZIS G, LIKAS A. The global kernel k-means algorithm for clustering in feature space[J]. IEEE Transactions on Neural Networks, 2009, 20(7):1181-1194. [16] ZHU Xiubin, PEDRYCZA W, LI Zhiwu. Fuzzy clustering with nonlinearly transformed data[J]. Applied Soft Computing, 2017, 61(1):364-376. [17] TANG Yiming, YANG Xuezhi. Symmetric implicational method of fuzzy reasoning[J]. International Journal of Approximate Reasoning, 2013, 54(8):1034-1048. [18] TANG Yiming, REN Fuji. Fuzzy systems based on universal triple I method and their response functions[J]. International Journal of Information Technology & Decision Making, 2017, 16(2):443-471. [19] TANG Yiming, PEDRYCZ W. On the α(u,v)-symmetric implicational method for R- and(S, N)-implications[J]. International Journal of Approximate Reasoning, 2018, 92(1):212-231. |
[1] | YIN Hua-jun1,2, ZHANG Xi-yong1,2*. A new method to evaluate the exponential sums of quadratic functions on finite field with character 2 [J]. J4, 2013, 48(3): 24-30. |
|