JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (1): 68-74.doi: 10.6040/j.issn.1671-9352.4.2020.156

•   • Previous Articles     Next Articles

F-C variable threshold concept lattices based on dependence spaces

Jing ZHANG(),Jian-min MA*()   

  1. School of Science, Chang'an University, Xi'an 710064, Shaanxi, China
  • Received:2020-06-15 Online:2021-01-01 Published:2021-01-05
  • Contact: Jian-min MA E-mail:jiing_z@126.com;cjm-zm@126.com

Abstract:

For a fuzzy formal context, a congruence relation is defined based on a variable precision operator on the power set of attributes. A congruence relation is obtained. Based on it, a dependence space is shown. By constructing a closure operator according to the congruence relation, the relationships between the closure operator and the variable precision concepts are discussed. Furthermore, applying the properties of the closure operator, we get that any fixed point of the closure operator is exactly the intension of some variable precision concept. Based on these, an algorithm to construct all variable precision concepts is obtained. Experiments are used to verify the feasibility of the proposed method.

Key words: fuzzy formal context, dependence space, congruence relation, closure operator

CLC Number: 

  • TP18

Table 1

Fuzzy formal context"

U a b c d e
x1 0.6 1.0 0.6 0.7 1.0
x2 0.7 0.8 1.0 0.8 0.5
x3 1.0 0.7 1.0 0.6 0.3
x4 1.0 0.6 0.9 1.0 0.2

Table 2

The intensions of F-C variable threshold concepts for δ=1"

B 1 2 3 4
abcde 0.6 0.5 0.3 0.2
ac 0.6 0.7 1.0 0.9
be 1.0 0.5 0.3 0.2
ad 0.6 0.7 0.6 1.0
c 0.6 1.0 1.0 0.9
a 0.6 0.7 1.0 1.0
Ø 1.0 1.0 1.0 1.0

Fig.1

F-C variable threshold concept lattices for δ=1.0, 0.8, 0.7"

Table 3

Comparison of algorithm running time with increased object set and unchanged attribute set"

|U| 5 10 15 20 25
Algorithm in this paper 0.253 1.091 8.875 46.752 117.323
Original algorithm 0.527 7.169 34.893 106.605 319.498

Table 4

Comparison of algorithm running time with increased attribute set and unchanged object set"

|A| 5 10 15 20 25
Algorithm in this paper 0.467 0.951 0.998 1.115 1.214
Original algorithm 0.625 6.362 37.214 124.872 356.699

Fig.2

Running time"

1 WILLE R . Restructuring lattice theory: an approach based on hierarchies of concepts[J]. Formal Concept Analysis, 1982, 5548 (83): 314- 339.
2 GANTER B , WILLE R . Formal concept analysis: mathematical foundations[M]. New York: Springer-Verlag, 1999: 157- 192.
3 JARVINEN J . Difference functions of dependences spaces[J]. Acta Cybernetica, 2001, 14 (4): 619- 630.
4 ZOU Caifeng , DENG Huifang , WAN Jiafu , et al. Mining and updating association rules based on fuzzy concept lattice[J]. Future Generation Computer Systems, 2018, 82, 698- 706.
doi: 10.1016/j.future.2017.11.018
5 李金海, 吴伟志, 邓硕. 形式概念分析的多粒度标记理论[J]. 山东大学学报(理学版), 2019, 54 (2): 30- 40.
LI Jinhai , WU Weizhi , DENG Shuo . Multi-scale theory in formal concept analysis[J]. Journal of Shandong University (Natural Science), 2019, 54 (2): 30- 40.
6 BURUSCO A , FUENTES R . The study of the L-fuzzy concept lattice[J]. Mathware and Soft Computing, 1994, 1 (3): 209- 218.
7 BELOHLAVEK R . Concept lattices and order in fuzzy logic[J]. Annals of Pure and Applied Logic, 2004, 128 (1): 277- 298.
8 ZHANG Wenxiu , MA Jianmin , FAN Shiqing . Variable threshold concept lattices[J]. Information Sciences, 2007, 177 (22): 4883- 4892.
doi: 10.1016/j.ins.2007.05.031
9 仇国芳, 朱朝晖. 基于经典-模糊变精度概念格的决策规则获取及其推理算法[J]. 计算机科学, 2009, 36 (12): 216- 218.
doi: 10.3969/j.issn.1002-137X.2009.12.054
QIU Guofang , ZHU Zhaohui . Acquisitions to decision rules and algorithms to inferences based on crisp-fuzzy variable threshold concept lattices[J]. Computer Science, 2009, 36 (12): 216- 218.
doi: 10.3969/j.issn.1002-137X.2009.12.054
10 YANG Yafeng . Parallel construction of variable precision concept lattice in fuzzy formal context[J]. AASRI Procedia, 2013, 5, 214- 219.
doi: 10.1016/j.aasri.2013.10.081
11 范世青, 张文修. 模糊概念格与模糊推理[J]. 模糊系统与数学, 2006, 20 (1): 11- 17.
doi: 10.3969/j.issn.1001-7402.2006.01.002
FAN Shiqing , ZHANG Wenxiu . Fuzzy concept lattice and fuzzy reasoning[J]. Fuzzy Systems and Mathematics, 2006, 20 (1): 11- 17.
doi: 10.3969/j.issn.1001-7402.2006.01.002
12 ZHUANG Ying , LIU Wenqi , WU Chinchia , et al. Pawlak algebra and approximate structure on fuzzy lattice[J]. The Scientific World Journal, 2014, 2014, 697- 706.
13 崔芳婷, 王黎明, 张卓. 基于约束的模糊概念格构造算法[J]. 计算机科学, 2015, 42 (8): 288- 293.
CUI Fangting , WANG Liming , ZHANG Zhuo . Construction algorithm of fuzzy concept lattice based on constraints[J]. Computer Science, 2015, 42 (8): 288- 293.
14 BOFFA S, MAIO C D, NOLA A D, et al. Unifying fuzzy concept lattice construction methods[C]//2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). [S. l]: IEEE, 2016.
15 PREM K , ASWANI C , LI Jinhai . Knowledge representation using interval-valued fuzzy formal concept lattice[J]. Soft Computing, 2016, 20 (4): 1485- 1502.
doi: 10.1007/s00500-015-1600-1
16 MAO Hua , ZHENG Zhen . The construction of fuzzy concept lattice based on weighted complete graph[J]. Journal of Intelligent and Fuzzy Systems, 2019, 36 (6): 5797- 5805.
doi: 10.3233/JIFS-181642
17 刘营营, 米据生, 梁美社, 等. 三支区间集概念格[J]. 山东大学学报(理学版), 2020, 55 (3): 70- 80.
LIU Yingying , MI Jusheng , LIANG Meishe , et al. Three-way interval-set concept lattice[J]. Journal of Shandong University (Natural Science), 2020, 55 (3): 70- 80.
18 林艺东, 李进金, 张呈玲. 基于矩阵的模糊-经典概念格属性约简[J]. 模式识别与人工智能, 2020, 33 (1): 21- 31.
LIN Yidong , LI Jinjin , ZHANG Chengling . Fuzzy-crisp concept lattice attribute reduction based on matrix[J]. Pattern Recognition and Artificial Intelligence, 2020, 33 (1): 21- 31.
19 NOVOTNY M . Dependence spaces of information system[J]. Incomplete Information: Rough Set Analysis, 1998, 13, 193- 246.
20 MA Jianmin, ZHANG Wenxiu, WANG Xia. Dependence space of concept lattices based on rough set[C]//2006 IEEE International Conference on Granular Computing. Atlanta: IEEE, 2006: 200-204.
21 WANG Xia . Approaches to attribute reduction in concept lattices based on rough set theory[J]. International Journal of Hybrid Information Technology, 2012, 5 (2): 67- 79.
22 包永伟, 王霞, 吴伟志. 两类概念格的依赖空间理论[J]. 计算机科学, 2014, 41 (2): 236- 239.
doi: 10.3969/j.issn.1002-137X.2014.02.051
BAO Yongwei , WANG Xia , WU Weizhi . Dependence space based on two types of concept lattices[J]. Computer Science, 2014, 41 (2): 236- 239.
doi: 10.3969/j.issn.1002-137X.2014.02.051
23 SHU Chang , MO Zhiwen , TANG Xiao , et al. Attribute reduction of lattice-value information system based on L-dependence spaces[J]. Fuzzy Information & Engineering and Operations Research & Management, 2014, 211, 107- 112.
24 MA Jianmin , ZHANG Wenxiu , CAI Sheng . Variable threshold concept lattice and dependence space[J]. Fuzzy Systems and Knowledge Discovery, 2006, 4223, 109- 118.
25 WARD M , DILWORTH R P . Residuated lattices[J]. Trans Amer Math Soc, 1939, 45, 335- 354.
doi: 10.1090/S0002-9947-1939-1501995-3
26 裴道武. 剩余格与正则剩余格的特征定理[J]. 数学学报, 2002, 45 (2): 271- 278.
doi: 10.3321/j.issn:0583-1431.2002.02.008
PEI Daowu . The characterization of residuated lattices and regular residuated lattices[J]. Journal of Mathematics, 2002, 45 (2): 271- 278.
doi: 10.3321/j.issn:0583-1431.2002.02.008
27 BURUSCO A , FUENTES R . The study on interval-valued contexts[J]. Fuzzy Sets and Systems, 2001, 121 (3): 439- 452.
doi: 10.1016/S0165-0114(00)00059-2
[1] JI Ru-ya, WEI Ling, REN Rui-si, ZHAO Si-yu. Pythagorean fuzzy three-way concept lattice [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(11): 58-65.
[2] . The number of homomorphisms from metacyclic groups to metacyclic groups [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 17-22.
[3] LU Tao, WANG Xi-juan, HE Wei. The operator theory on complete partially ordered objects in a topos [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 64-71.
[4] BO Chun-xin, YAO Bing-xue. (λ, μ)-anti-fuzzy rough subgroup [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 23-27.
[5] WEN Xian-hong, WU Hong-bo*. The prime reverse deductive system of locally finite #br# BL-algebras with properties [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 36-41.
[6] LIU Lu-lu1, FU Wen-qing2, LI Sheng-gang1*. Characterizations of fuzzy subinclines, fuzzy ideals, fuzzy filters and fuzzy congruence relations [J]. J4, 2011, 46(11): 48-52.
[7] YU Cheng-yi, LI Jin-jin*. β lower approximation attribute reduction in variable precision rough sets [J]. J4, 2011, 46(11): 17-21.
[8] ZHANG Yan-xia, LI Sheng-gang*, XIAN Lu. Products, sums, and quotients of M-closure spaces [J]. J4, 2010, 45(4): 74-76.
[9] LIU Chun-hui1, XU Luo-shan2. On ideals of residuated lattices [J]. J4, 2010, 45(4): 66-71.
[10] QIN Xue-cheng, LIU Chun-hui*. Fuzzy ⊙-ideals in regular residuated lattices [J]. J4, 2010, 45(10): 66-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SHI Chang-guang . Multi-soliton solution of the Faddeev model[J]. J4, 2007, 42(7): 38 -40 .
[2] DONG Jiong, CAO Xiao-hong. Weyls theorem for the cube of operator and compact perturbations[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 15 -21 .
[3] . Study on the determination method of total flavonoids in ginkgo biloba extract[J]. J4, 2009, 44(5): 40 -44 .
[4] LIU Ru-jun,CAO Yu-xia,ZHOU Ping . Anti-control for discrete chaos systems by small feedback[J]. J4, 2007, 42(7): 30 -32 .
[5] HU Mo-Yin. Multiplicity results for a class of quasi-linear Neumann problems[J]. J4, 2009, 44(10): 39 -42 .
[6] DU Rui-ying, YANG Yong, CHEN Jing, WANG Chi-heng. An efficient network traffic classification scheme based on similarity[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(09): 109 -114 .
[7] GUO Fei-wang, ZHANG Xi-yong, HAN Wen-bao. A construction of perfect nonlinear functions[J]. J4, 2011, 46(3): 26 -30 .
[8] FAN Ming, LIU Jun, ZHENG Qing-hua, TIAN Zhen-zhou, ZHUANG Er-yue, LIU Ting. SODB:a novel method for software plagiarism detection based on stack operation dynamic birthmark[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(09): 9 -16 .
[9] Ma Jia-sai,ZHANG Yong-jun . An optimized method for minimal cubing approach[J]. J4, 2006, 41(3): 104 -107 .
[10] ZHANG Fengxia1, LI Ying1,2, GUO Wenbin1, ZHAO Jianli1. Extremal ranks for block Hermitian and skew-Hermitian matrices[J]. J4, 2010, 45(4): 106 -110 .