JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (1): 91-100.doi: 10.6040/j.issn.1671-9352.4.2024.013

Previous Articles    

Some properties of the fuzzy knowledge structures

ZHANG Jiping1,4, WU Weizhi2*, ZHOU Miaojuan3, LI Jinjin1,3   

  1. 1. School of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou 362000, Fujian, China;
    2. School of Information Engineering, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China;
    3. School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, Fujian, China;
    4. Key Laboratory of New Technologies and Knowledge Engineering for Big Data Management in Fujian Province, Quanzhou Normal University, Quanzhou 362000, Fujian, China
  • Published:2025-01-10

Abstract: Based on the fuzzy rough approximate operator, the concept of upper and lower approximate fuzzy knowledge states is proposed. A notation of upper and lower approximate fuzzy knowledge states is discussed. A necessary and sufficient conditions for upper and lower approximate fuzzy knowledge states family to form the fuzzy knowledge structure is obtained respectively. The lower approximate fuzzy knowledge state set family is a necessary and sufficient condition for the fuzzy closure space, and the upper approximate fuzzy knowledge state set family is a necessary and sufficient condition for the fuzzy knowledge space. It is also proven that the fuzzy closure space induced by the same pair of fuzzy rough approximation operators is dual to the fuzzy knowledge space, and the fine relationship of the upper and lower approximate fuzzy knowledge structures is explored.

Key words: fuzzy rough approximation operator, fuzzy knowledge structures, fuzzy closure space, fuzzy knowledge space, fine relation

CLC Number: 

  • TP182
[1] DOIGNON J P, FALMAGNE J C. Spaces for the assessment of knowledge[J]. International Journal of Man-Machine Studies, 1985, 23(2):175-196.
[2] 刘艳花,杨贯中. 基于扩展知识空间理论的技能自适应测试过程[J]. 计算机系统应用, 2010, 19(7):69-73. LIU Yanhua, YANG Guanzhong. Adaptive test process based on extension of knowledge space theory[J]. Computer Systems and Applications, 2010, 19(7):69-73.
[3] 刘译蓬. 基于知识空间理论的认知诊断自适应测试选题方法研究[D]. 锦州: 渤海大学, 2019. LIU Yipeng. Research on selection method of cognitive diagnosis adaptive test based on knowledge space theory[D]. Jinzhou: Bohai University, 2019.
[4] 谈成群,谢深泉. 超文本教学系统中学生知识的自适应测评研究[J]. 计算机工程与设计, 2007, 28(20):5072-5075. TAN Chengqun, XIE Shenquan. Adaptive assessment of students knowledge in hypertext tutoring system[J]. Computer Engineering and Design, 2007, 28(20):5072-5075.
[5] FALMAGNE J C, DOIGNON J P. Learning spaces: interdisciplinary applied mathematics[M]. Berlin: Springer, 2011:417.
[6] 李金海,张瑞,智慧来,等. 知识空间理论综述[J]. 模式识别与人工智能, 2024, 37(2):106-127. LI Jinhai, ZHANG Rui, ZHI Huilai, et al. Review of knowledge space theory[J]. Pattern Recognition and Artificial Intelligence, 2024, 37(2):106-127.
[7] 王大利,许晴媛,李进金,等. 知识点网络下的知识评估和学习路径选择[J]. 南京大学学报(自然科学版), 2023, 59(4):629-643. WANG Dali, XU Qingyuan, LI Jinjin, et al. Knowledge assessment and learning paths selection under knowledge point network[J]. Journal of Nanjing University( Natural Science), 2023, 59(4):629-643.
[8] FALMAGNE J C, KOPPEN M, VILLANO M, et al. Introduction to knowledge spaces: how to build, test, and search them[J]. Psychological Review, 1990, 97(2):201-224.
[9] KOPPEN M, DOIGNON J P. How to build a knowledge space by querying an expert[J]. Journal of Mathematical Psychology, 1990, 34(3):311-331.
[10] HELLER J. A formal framework for characterizing querying algorithms[J]. Journal of Mathematical Psychology, 2004, 48(1):1-8.
[11] SCHREPP M. A method for the analysis of hierarchical dependencies between items of a questionnaire[J]. Methods of Psychological Research Online, 2003, 19:43-79.
[12] DOIGNON J P. Knowledge spaces and skill assignments[M]. New York: Springer, 1994.
[13] SUN Wen, Li Jinjin, GE Xun, et al. Knowledge structures delineated by fuzzy skill maps[J]. Fuzzy Sets and Systems, 2021, 407:50-66.
[14] PAWLAK Z. Rough sets[J]. International Journal of Computer Information Science, 1982, 11(5):341-356.
[15] XIAO Jiayu, ZHANG Qinghua, AI Zhihua, et al. A fast neighborhood classifier based on hash bucket with application to medical diagnosis[J]. International Journal of Approximate Reasoning, 2022, 148:117-132.
[16] JIN Chenxia, MI Jusheng, LI Fachao, et al. A novel probabilistic hesitant fuzzy rough set based multi-criteria decision-making method[J]. Information Sciences, 2022, 608:489-516.
[17] 王国胤,姚一豫,于洪. 粗糙集理论与应用研究综述[J]. 计算机学报, 2009, 32(7):1229-1246. WANG Guoyin, YAO Yiyu, YU Hong. A survey on rough set theory and applications[J]. Chinese Journal of Computers, 2009, 32(7):1229-1246.
[18] YAO Yiyu, MIAO Duoqian, XU Feifei. Granular structures and approximations in rough sets and knowledge spaces[M] //ABRAHAM A, FALCÓN R, BELLO R. Rough Set Theory(A True Landmark in Data Analysis). Heidelberg: Springer, 2009:71-84.
[19] 高纯,王睿智. 知识空间理论析取模型下最小技能集的生成[J]. 计算机科学与探索, 2010, 4(12):1109-1114. GAO Chun, WANG Ruizhi. The formation of minimal skill set in disjunctive model of knowledge space theory[J]. Journal of Frontiers of Computer Science and Technology, 2010, 4(12):1109-1114.
[20] 杨桃丽,李进金,李招文,等. 基于技能构建知识结构的两种精度模型与技能子集约简[J]. 模式识别与人工智能, 2022, 35(8):671-687. YANG Taoli, LI Jinjin, LI Zhaowen, et al. Two kinds of variable precision models based on skill for constructing knowledge structures and skill subset reduction[J]. Pattern Recognition and Artificial Intelligence, 2022, 35(8):671-687.
[21] LIU Guilong. Rough set approaches in knowledge structures[J]. International Journal of Approximate Reasoning, 2021, 138:78-88.
[22] SCHREPP M. A generalization of knowledge space theory to problems with more than two answer alternatives[J]. Journal of Mathematical Psychology, 1997, 41(3):237-243.
[23] BARTL E, BELOHLAVEK R. Knowledge spaces with graded knowledge states[J]. Information Sciences, 2011, 181(8): 1426-1439.
[24] STEFANUTTI L, ANSELM P, CHIUSOLE D, et al. On the polytomous generalization of knowledge space theory[J]. Journal of Mathematical Psychology, 2020, 94:102306.
[25] HELLER J. Generalizing quasi-ordinal knowledge spaces to polytomous items[J]. Journal of Mathematical Psychology, 2021, 101:102515.
[26] SUN Wen, LI Jinjin, LIN Fucai, et al. Constructing polytomous knowledge structures from fuzzy skills[J]. Fuzzy Sets and Systems, 2023,461:108395.
[27] ZHOU Yinfeng, LI Jinjin, WANG Hongkun, et al. Skills and fuzzy knowledge structures[J]. Journal of Intelligent & Fuzzy Systems, 2022, 42(3):2629-2645.
[28] DUBOIS D, PRADE H. Rough fuzzy sets and fuzzy rough sets[J]. International Journal of General Systems, 1990, 17(2/3):191-209.
[29] 杨海龙. 双论域粗糙集理论与方法[M]. 北京: 科学出版社, 2016:33-41. YANG Hailong. Rough set theory and methods for bi-theoretical domains[M]. Beijing: Science Press, 2016:33-41.
[30] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.
[31] 吴伟志,米据生. 粗糙集的数学结构[M]. 北京: 科学出版社, 2019:44-57. WU Weizhi, MI Jusheng. Mathematical structures of rough sets[M]. Beijing: Science Press, 2019:44-57.
[1] XIONG Xing-guo, LU Ling-xia. MV-algebra valued metric-based fuzzy rough sets [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(11): 81-89.
[2] ZHANG Hai-dong1, HE Yan-ping 2. Generalized interval-valued fuzzy rough sets and axiomatic characterizations [J]. J4, 2013, 48(09): 56-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!