JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (4): 12-20.doi: 10.6040/j.issn.1671-9352.7.2021.149
HAN Lu1, GUO Xin-yao1, WEI Wei1,2, LIANG Ji-ye1,2*
CLC Number:
[1] XU Yaowen, WU Lifang, JIAN Meng, et al. Identity-constrained noise modeling with metric learning for face anti-spoofing[J]. Neurocomputing, 2021, 434:149-164. [2] YU Jian, HU Changhui, JING Xiaoyuan, et al. Deep metric learning with dynamic margin hard sampling loss for face verification[J]. Signal Image and Video Processing, 2020, 14(4):791-798. [3] HU Junlin, LU Jiwen, YUAN Junsong, et al. Large margin multi-metric learning for face and kinship verification in the wild[C] //Asian Conference on Computer Vision. Berlin: Springer, 2014: 252-267. [4] CAO Rui, ZHANG Qian, ZHU Jiasong, et al. Enhancing remote sensing image retrieval using a triplet deep metric learning network[J]. International Journal of Remote Sensing, 2020, 41(2):740-751. [5] 杜宇宁, 艾海舟. 基于二次相似度函数学习的行人再识别[J]. 计算机学报, 2016, 39(8):1639-1651. DU Yuning, AI Haizhou. Learning quadratic similarity function for pedestrian re-identification[J]. Chinese Journal of Computers, 2016, 39(8):1639-1651. [6] JIN Yi, LI Chenning, LI Yidong, et al. Model latent views with multi-center metric learning for vehicle re-identification[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3):1-13. [7] SHEN C, WELSH A, WANG L. PSDBoost: matrix-generation linear programming for positive semidefinite matrices learning[C] //Advances in Neural Information Processing Systems 21. Cambridge, MA: MIT Press, 2008: 1473-1480. [8] SHEN C, KIM J, WANG L, et al. Positive semidefinite metric learning with boosting[C] //Advances in Neural Information Processing Systems 22. Cambridge, MA: MIT Press, 2009: 1651-1659. [9] BI Jinbo, WU Dijia, LU Le, et al. Adaboost on low-rank psd matrices for metric learning[C] //IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2011: 2617-2624. [10] 齐忍, 朱鹏飞, 梁建青. 混杂数据的多核几何平均度量学习[J]. 软件学报, 2017, 28(11):2992-3001. QI Ren, ZHU Pengfei, LIANG Jianqing. Multiple kernel geometric mean metric learning for heterogeneous data[J]. Journal of Software, 2017, 28(11):2992-3001. [11] ZHU Pengfei, CHENG Hao, HU Qinghua, et al. Towards generalized and efficient metric learning on Riemannian manifold[C] //International Joint Conference on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann, 2018: 3235-3241. [12] PAABEN B, GALLICCHIO C, MICHELI A, et al. Tree edit distance learning via adaptive symbol embeddings[C] //International Conference on Machine Learning. New York: ACM, 2018: 3976-3985. [13] XING E P, NG A Y, JORDAN M I, et al. Distance metric learning with application to clustering with side-information[C] //Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2002: 521-528. [14] WEINBERGER K Q, BLITZER J, SAUL L K. Distance metric learning for large margin nearest neighbor classification[C] //Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2006: 1473-1480. [15] DAVIS J V, KULIS B, JAIN P, et al. Information-theoretic metric learning[C] //International Conference on Machine Learning. New York: ACM, 2007: 209-216. [16] YING Yiming, LI Peng. Distance metric learning with eigenvalue optimization[J]. The Journal of Machine Learning Research, 2012, 13(1):1-26. [17] ZUO Wangmeng, WANG Faqiang, ZHANG David, et al. Distance metric learning via iterated support vector machines[J]. IEEE Transactions on Image Processing, 2017, 26(10):4937-4950. [18] BOHNE J, YING Y, GENTRIC S, et al. Large margin local metric learning[C] //European Conference on Computer Vision. Berlin: Springer, 2014: 679-694. [19] YE Hanjia, ZHAN Dechuan, LI Nan, et al. Learning multiple local metrics: global consideration helps[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 42(7):1698-1712. [20] MU Yang, DING Wei, TAO Dacheng. Local discriminative distance metrics ensemble learning[J]. Pattern Recognition, 2013, 46(8):2337-2349. [21] WANG J, KALOUSIS A, WOZNICA A. Parametric local metric learning for nearest neighbor classification[C] //Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2012: 1601-1609. [22] CHEN Xianhong, HE Liang, XU Can, et al. Distance-dependent metric learning[J]. IEEE Signal Processing Letters, 2019, 26(2):357-361. [23] WEINBERGER K Q, SAUL L K. Distance metric learning for large margin nearest neighbor classification[J]. Journal of Machine Learning Research, 2009, 10(2):207-244. [24] SHI Y, BELLET A, SHA F. Sparse compositional metric learning[C] //The Association for the Advance of Artificial Intelligence. Menlo Park, CA: AAAI, 2014: 2078-2084. [25] NGUYEN B, FERRI F J, MORELL C, et al. An efficient method for clustered multi-metric learning[J]. Information Sciences, 2019, 471: 149-163. [26] YE Hanjia, ZHAN Dechuan, JIANG Yuan, et al. What makes objects similar: a unified multi-metric learning approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(5):1257-1270. [27] YE Hanjia, ZHAN Dechuan, SI Xuemin, et al. Learning mahalanobis distance metric: considering instance disturbance helps[C] //International Joint Conference on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann, 2017: 3315-3321. [28] CHEN Shuo, GONG Chen, YANG Jian, et al. Adversarial metric learning[C] //International Joint Conference on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann, 2018: 2021-2227. [29] ABIN A, BASHIRI M A, BEIGY H. Learning a metric when clustering data points in the presence of constraints[J]. Advances in Data Analysis and Classification, 2020, 14(1):29-56. [30] MAATEN L V D, HINTON G. Visualizing data using t-SNE[J]. The Journal of Machine Learning Research, 2008, 9(11):2579-2605. [31] DEMSAR J. Statistical comparisons of classifiers over multiple data sets[J]. The Journal of Machine Learning Research, 2006, 7:1-30. |
[1] | Zheng-yu LU,Guang-song LI,Ying-zhu SHEN,Bin ZHANG. Unknown protocol message clustering algorithm based on continuous features [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(5): 37-43. |
[2] | LIU Guo-tao, ZHANG Yan-ping, XU Chen-chu. Three-way decisions model based on the optimal center covering algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(3): 105-110. |
[3] | JI Xin-rong, HOU Cui-qin, HOU Yi-bin, ZHAO Bin. A distributed training method for L1 regularized kernel machines based on filtering mechanism [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(9): 137-144. |
[4] | TUN Xiu-Guo, CENG An-Zhou. Research on goal description logics(GDLs) [J]. J4, 2009, 44(11): 68-74. |
[5] | HU Chuan-Ke, CHEN Ru-Hui, DIAO E-Ou. Prediction of proteinprotein interaction based on improved pseudo amino acid composition [J]. J4, 2009, 44(9): 17-21. |
[6] | XIU Ming, CHEN Bao-Hui, SHI Kai-Quan. F-rough law and its attribute control [J]. J4, 2008, 43(12): 66-72. |
[7] | FU Hai-yan,SHI Kai-quan . Knowledge filter and attribute f-transfer dependence [J]. J4, 2007, 42(10): 54-58 . |
[8] | FU Hai-yan,LU Chang-jing,SHI Kai-quan . (F,F-)-law inference and law mining [J]. J4, 2007, 42(7): 54-57 . |
[9] | ZHANG Ling,QIU Yu-feng,REN Xue-fang . Rough law generation and its separation [J]. J4, 2008, 43(3): 58-63 . |
[10] | ZHANG Ling ,QIU Yu-feng ,REN Xue-fang , . One direction S-rough sets-based knowledge addition and knowledge battlement recognition [J]. J4, 2008, 43(10): 12-17 . |
[11] | LIN Yan-li, LIU Xiao-dong. Research on local double relative quantitative decision-theoretic rough set for incomplete ordered information system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(3): 89-97. |
[12] | LI Min, YANG Ya-feng, LEI Yu, LI Li-hong. Optimal granularity selection based on minimum cost of extension domain change [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(2): 17-27. |
[13] | ZHANG Cong, YU Hong. An incremental three-way decisions soft clustering algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 40-47. |
[14] | ZHAI Jun-hai, ZHANG Yao, WANG Xi-zhao. Tolerance rough fuzzy set model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 73-79. |
[15] | ZHANG Yao, MA Ying-cang, YAND Xiao-fei, ZHU Heng-dong, YANG Ting. Multi-label feature selection based on manifold structure and flexible embedding [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(7): 91-102. |
|