J4 ›› 2009, Vol. 44 ›› Issue (10): 48-50.

• Articles • Previous Articles     Next Articles

Linear maps preserving zeros of a polynominal on  factor von Neumann algebras

 CUI Yun-Li, ZHANG Jian-Hua   

  1. College of Mathematics and Information Science, Shaanxi Normal University,Xi'an 710062, Shaanxi, China
  • Received:2008-12-30 Online:2009-10-16 Published:2009-12-07

Abstract:

Let M be a factor von Neumann algebra acting on a complex separable Hilbert spaceM with dim M>2, and Φ be a linear bijective map from M onto itself.  We prove that  Φ satisfies Φ(A)Φ(B)=Φ(B)Φ(A)* whenever AB=BA* for all A,B∈M if and only if  Φ(A)=λΨ(A) for all A∈M, where λ is a nonzero real number and Ψ is an atomorphism of  M

Key words: linear preserver; zero of polynominal; von Neumann algebra

CLC Number: 

  • Q177.1
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!