J4 ›› 2009, Vol. 44 ›› Issue (8): 58-61.

• Articles • Previous Articles     Next Articles

S-Noetherianess of A+xB[[x]]

  

  1. College of Science and Information Engineering, Northwest Minority U niversity, Lanzhou 730030, Gansu, China
  • Received:2008-12-30 Online:2009-08-16 Published:2009-11-08
  • About author:JIAO Yujuan(1976-), female, lecturer, major in computational mathematics. Email:jsjyj@xbmu.edu.cn

Abstract:

Let ABbe an extension  of commutative rings with identity, x an indeterminate over B, R:=A+xB[[ x]] and SA a given multiplicative set . It is shown that if ,(∩snA,n1)∩SФfor each  s∈S  where  Scons ists of nonzerodivisors, then Ris SNoetherian if and only if  A is S-Noetherian and B is an  S -finite A-module. 

 

 

Key words: S-Noetherian rings; S-finite ideal; anti-Archimedean multiplicative set

CLC Number: 

  • O153.3
[1] CHEN Hua-xi1, ZHANG Xiao-hui2, XU Qing-bing3. The Structure Theorem of weak comodule algebras in
Yetter-Drinfeld module categories
[J]. J4, 2013, 48(12): 14-17.
[2] YIN Xiao-bin, JI Xue-mei. On a generalization of quasi GP-injective modules [J]. J4, 2013, 48(12): 1-5.
[3] WANG Wen-kang. On central linear McCoy rings [J]. J4, 2013, 48(12): 6-13.
[4] WANG Ling-Yun. Distributive congruences on semirings [J]. J4, 2009, 44(9): 63-65.
[5] JIAO Tie-Ke. The eventually regularity on a class subsemirings of a semiring [J]. J4, 2009, 44(8): 56-57.
[6] DONG Jun, WEI Jie. On a generalization of α-reversible rings [J]. J4, 2009, 44(8): 62-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!