JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2014, Vol. 49 ›› Issue (10): 56-61.doi: 10.6040/j.issn.1671-9352.0.2014.075

Previous Articles     Next Articles

A note on operator matrixs

CUI Miao-miao, WANG Bi-yu, CAO Xiao-hong   

  1. College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
  • Received:2014-03-03 Online:2014-10-20 Published:2014-11-10

Abstract: Let H be a separable complex Hilbert space and B(H) be the algebra of all bounded linear operators. Let  be an operator matrix, which acts on B(HH). We character the compact perturbations of single-valued extension property and Browder theorem about T by A's respectively, when Bk=0(k∈N and k≥2), AB=BA.

Key words: Browder theorem, compact perturbations, single-valued extension property

CLC Number: 

  • O177.2
[1] DUNFORD N. Spectral theory II, resolutions of the identity[J]. Pacific J Math, 1952, 2(4):559-614.
[2] DUNFORD N. Spectral operators[J]. Pacific J Math, 1954, 4(3):321-354.
[3] ZHU Sen, LI Chunguang. SVEP and compact perturbations[J]. J Math Anal Appl, 2011, 380:69-75.
[4] LAURSEN K B, NEUMANN M M. An introduction to local spectral theorey[M]. New York: Clarendon Press, 2000.
[5] GRABINER S. Uniform ascent and descent of bounded operators[J]. Math Soc Japan, 1982, 34(2):317-337.
[6] HARTE R, LEE W Y. Another note on Weyl's theorem[J]. Trans Amer Math Soc, 1997, 349:2115-2124.
[7] RAKOC?EVI? V. Operators obeying a-Weyl's theorem[J]. Rev Roumaine Math Pures Appl, 1989, 34(10):915-919.
[8] RAKOC?EVI? V. On a class of operators[J]. Mat Vesnik, 1985, 37:423-426.
[9] LI Juexian. The single valued extension property for operator weighted shifts[J]. Northeast Math J, 1994, 10(1):99-103.
[10] DUGGAL B P. Upper triangular operator matrices with single-valued extension property[J]. J Math Anal, 2009, 349:85-89.
[11] FINChH J K. The single valued extension property on a banach space[J]. Pacific J Math, 1975, 58:61-69.
[12] 史维娟,曹小红. Weyl定理的稳定性的判定[J]. 山东大学学报: 理学版, 2012,47(4):24-27. SHI Weijuan, CAO Xiaohong. Judgement for the stability of Weyl's theorem[J]. Journal of Shandong University: Natural Science, 2012,47(4):24-27.
[1] ZHANG Ying, CAO Xiao-hong, DAI Lei. Judgement of Weyls theorem for bounded linear operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 82-87.
[2] SONG Jia-jia, CAO Xiao-hong, DAI Lei. The judgement for the small compact perturbation of SVEP for upper triangular operator matrices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 61-67.
[3] DONG Jiong, CAO Xiao-hong. Weyls theorem for the cube of operator and compact perturbations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 15-21.
[4] WU Xue-li, CAO Xiao-hong, ZHANG Min. The perturbation of the single valued extension property for bounded linear operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 5-9.
[5] WANG Bi-yu, CAO Xiao-hong*. The perturbation for the Browder’s theorem of operator matrix#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 90-95.
[6] YU Wei, CAO Xiao-hong*. Topological uniform descent and the single valued extension property [J]. J4, 2013, 48(4): 10-14.
[7] ZHAO Hai-yan, CAO Xiao-hong*. The stability of the property (ω1) for the Helton class operators [J]. J4, 2013, 48(4): 15-19.
[8] SHI Wei-juan, CAO Xiao-hong*. Judgement for the stability of Weyl′s theorem [J]. J4, 2012, 47(4): 24-27.
[9] ZHANG He-jia, CAO Xiao-hong*. The equivalence of a-Browder theorem and property (ω1) for operational calculus of operators [J]. J4, 2011, 46(4): 108-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!