JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (02): 60-66.doi: 10.6040/j.issn.1671-9352.0.2014.349

Previous Articles     Next Articles

General solution and stability of bi-cubic functional equation

QI Wei-qing1, JI Pei-sheng2, LU Hai-ning2   

  1. 1. College of Information Engineering, Qingdao University, Qingdao 266071, Shandong China;
    2. College of Mathematics, Qingdao University, Qingdao 266071, Shandong China
  • Received:2014-07-31 Revised:2014-11-03 Online:2015-02-20 Published:2015-01-27

Abstract: Let X and Y be real vector spaces. A mapping f:X2Y is called bi-cubic if it satisfies f(2x1+x2,2y1+y2)+f(2x1+x2,2y1-y2)+f(2x1-x2,2y1+y2)+ f(2x1-x2,2y1-y2)=4f(x1+x2,y1+y2)+4f(x1-x2,y1+y2)+24f(x1,y1+y2)+ 4f(x1+x2,y1-y2)+4f(x1-x2,y1-y2)+24f(x1,y1-y2)+24f(x1+x2,y1)+ 24f(x1-x2,y1)+144f(x1,y1) for all x1,x2,y1,y2∈X. The solution of this equation is obtained and the Hyers-Ulam stability of it is proved on fuzzy Banach spaces.

Key words: Hyers-Ulam stability, cubic functional equation, bi-cubic functional equation, fuzzy Banach space

CLC Number: 

  • O177.1
[1] ULAM S M. A Collection of Mathematical Problems[M]. New York: Wiley, 1960.
[2] HYERS D H. On the stability of the linear functional equation[J]. Proc Natl Acad Sci, 1941, 27:222-224.
[3] RASSIAS Th M. On the stability of linear mappings in Banach spaces[J]. Proc Amer Math Soc, 1978, 72:297-300.
[4] GAVRUTA P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings[J]. J Math Anal Appl, 1994, 184:431-436.
[5] JUN K M, KIM H M. The generalized Hyers-Ulam-Rasias stability of cubic functional equation[J]. J Math Anal Appl, 2002, 274:867-878.
[6] BRILLOUET BELLOUT N, BRZDEK J, CIEPLINSKI K. On some recent developments in Ulam's type stability[J]. Abstr Appl Anal, 2012,2012:1-41.art. ID 716936.doi:10.1155/2012/716936.
[7] JUNG S M. Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis[M]. NewYork: Springer, 2011.
[8] LEE J R, JANG S Y, PARK Ch, et al. Fuzzy stability of quadratic functional equations[J]. Adv Difference Equ, 2010, Art.ID 412160.
[9] ALIREZA K M, MOHAMMAD S M. Fuzzy versions of Hyers-Ulam-Rassias theorem[J]. Fuzzy Sets and Systems, 2008, 159:720-729.
[10] XU Tianzhou. On fuzzy approximately cubic type mapping in fuzzy Banach spaces[J]. Information Sciences, 2014, 278:56-66.
[11] XU Tianzhou, RASSIAS J M. Stability of general multi-Euler-Lagrange quadratic functional equations in non-Archimedean fuzzy normed spaces[J]. Advances in Difference Equations, 2012, 2012:119. doi:10.1186/1687-1847-2012-119.
[12] JI Peisheng, QI Weiqing, ZHAN Xiaojing. Generalized stability of multi-quadratic mappings[J]. J Math Res & Appl, 2014, 34(2):209-215.
[13] 纪培胜,魏然红,刘荣荣. Cauchy-三次函数方程及其Hyers-Ulam稳定性[J]. 数学学报,2014,57(3):559-568. JI Peisheng, WEI Ranhong, LIU Rongrong. Cauchy-cubic functional equation and its Hyers-Ulam stability[J]. Acta Mathematica Sinica, 2014, 57(3):559-568.
[14] BAE J H, PARK W G. On a bi-quadratic functional equation and its stability[J]. Nonlinear Anal, 2005, 62:643-654.
[15] CHU H Y, KU S H, PARK J S. Partial stabilities and partial derivations of n-variable functions[J]. Nonlinear Analysis, 2010, 72:1531-1541.
[16] CIEPLINSKI K. Generalized stability of multi-additive mappings[J]. App Math Lett, 2010, 23:1291-1294.
[17] CIEPLINSKI K. On the generalized Hyers-Ulam stability of multi-quadratic mappings[J]. Computer Math Appl, 2011, 62:3418-3426.
[18] BAG T, SAMANTA S K. Finite dimensional fuzzy normed linear spaces[J]. J Fuzzy Math, 2003, 11:687-705.
[19] ABBAS N, ZAMANI ESKANDANI G. Stability of a mixed additive and cubic functional equation in quasi-Banach spaces[J]. Math Aual Appl, 2008, 342:1318-1331.
[20] GORDJI M E, KHODAEIi H. Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces[J]. Nonlinear Analysis, 2009, 71:5629-5643.
[1] JI Pei-sheng1, QI Wei-qing2, LIU Rong-rong1. On the Hyers-Ulam Stability of n-cocycles [J]. J4, 2013, 48(4): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!