JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (02): 67-74.doi: 10.6040/j.issn.1671-9352.0.2014.078
Previous Articles Next Articles
CHEN Yi-ming, KE Xiao-hong, HAN Xiao-ning, SUN Yan-nan, LIU Li-qing
CLC Number:
[1] SUN H, ABDELWAHAB A, ONARAL B. Linear approximation of transfer function with a pole of fractional order[J]. IEEE Transactions on Automatic Control, 1984, 29:441-444. [2] KOELLER R C. Applications of fractional calculus to the theory of viscoelasticity[J]. Journal of Applied Mechanics, 1984, 51:299-307. [3] DEBNATH L. Recent applications of fractional calculus to science and engineering[J]. International Journal of Mathematics and Mathematical Sciences, 2003, 54:3413-3442. [4] GRIGORENKOL, GRIGORENKO E. Chaotic dynamics of the fractional Lorenz system[J]. Physical Review Letters, 2003, 91(3):034101. [5] YUSTE S B. Weighted average finite difference methods for fractional diffusion equations[J]. Computational Physics, 2006, 216:264-274. [6] MOMANI S M, ODIBAT Z. Numerical approach to differential equations of fractional order[J]. Journal of Computational and Applied Mathematics, 2007: 96-110. [7] LI Xinxiu. Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17:3934-3946. [8] WU Guocheng, LEE E W M. Fractional variational iteration method and its application[J]. Physics Letters A, 2010, 374(25):2506-2509. [9] MOMANI S M, ODIBAT Z. Homotopy Perturbation method for nonlinear partial differential equations of fractional order[J]. Physic Letters A, 2007, 365:315-350. [10] REHMAN Mu, KHAN R A. The Legendre wavelet method for solving fractional differential equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16:4163-4173. [11] LI Yuanlu. Solving a nonlinear fractional differential equation using Chebyshev wavelets[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15:2284-2292. [12] MATIGNON D. Stability results of fractional differential equations with applications to control processing[C]. Proceeding of IMACS, IEEE-SMC, Lille,France, 1996: 963-968. [13] TAVAZOEI M S, HAERI M. A note on the stability of fractional order systems[J]. Mathematics and Computers in Simulation, 2009, 79(5):1566-1576. [14] ODIBAT Z. Analytic study on linear systems of fractional differential equations[J]. Computers and Mathematics with Applications, 2010, 59:1171-1183. [15] DAFTARDAR-GEJJI V, JAFARI H. Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives[J]. Journal of Mathematical Analysis and Applications, 2007, 328(2):1026-1033. [16] BONILLA B, RIVERO M, TRUJILLO J J. On systems of linear fractional differential equations with constant coefficients[J]. Applied Mathematics and Computation, 2007, 187(1):68-78. [17] 高芳,江卫华.分数阶微分方程组边值问题解的存在性[J].数学的实践与认识,2013,43(10):254-260. GAO Fang, JIANG Weihua. Existenceof solutions for boundary value problem of fractional differential equation system[J]. Mathematics in Practice and Theory, 2013, 43(10):254-260. |
|