JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (04): 71-75.doi: 10.6040/j.issn.1671-9352.0.2014.416

Previous Articles     Next Articles

The presented dimensions of polynomial rings

GUO Ying, YAO Hai-lou   

  1. College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
  • Received:2014-09-18 Revised:2015-03-04 Online:2015-04-20 Published:2015-04-17

Abstract: Let R be a ring with a unit element, and M be a right R-Module. The relationship between FPd(MR) and FPd(MR[x]) as well as between FPD(R) and FPD(R[x]) are obtained by using the presented dimensions of polynomial rings, when R and R[x] are coherent rings.

Key words: polynomial ring, coherent ring, presented dimension

CLC Number: 

  • O153.3
[1] COSTA D L. Parameterizing families of non-noetherian rings[J]. Communications in Algebra, 1994, 22(10):3997-4011.
[2] XUE Weimin. On n-presented modules and almost excellent extensions[J]. Communications in Algebra, 1999, 27(3):1091-1102.
[3] ZHOU Dexu, GONG Zhiwei. On presented dimensions of modules and rings[J]. International Journal of Mathematics and Mathematical Sciences, 2010:1-13. doi: 10.1155/2010/256267.
[4] 李元林. 有限表现维数的换环定理[J]. 南京大学学报: 数学半年刊, 1990, 7(1):75-84. LI Yuanlin. Some theorems on chane of rings of the finitely presented dimension[J]. Journal of Nanjing University Mathematical Biquarterly, 1990, 7(1):75-84.
[5] 周伯壎. 同调代数[M]. 北京: 科学出版社, 1988. ZHOU Boxun. Homological algebra[M]. Beijing: Science Press, 1988.
[6] 程福长, 易忠. 环的同调维数[M]. 桂林: 广西师范大学出版社, 2000. CHENG Fuchang, YI Zhong. Homological dimension of rings[M]. Guilin: Guangxi Normal University Press, 2000.
[7] 李元林. F.P.-维数的合冲定理[J]. 数学研究与评论, 1993, 13(2): 283-288. LI Yuanlin. Syzygy theory of F.P.-dimension[J]. Journal of Mathematical Research and Exposition, 1993, 13(2):283-288.
[1] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[2] WANG Yao1, JIANG Mei-mei1, REN Yan-li2*. Some properties of skew polynomial rings#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 40-45.
[3] CHEN Wen-jing, LIU Zhong-kui. Remarks on n-strongly Gorenstein FP-injective modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 50-54.
[4] ZHANG Wan-ru. Skew nil McCoy rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 57-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!