JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (05): 68-73.doi: 10.6040/j.issn.1671-9352.0.2014.317

Previous Articles     Next Articles

Existence of nontrivial solutions for boundary value problems of fractional differential equations

MA Yan1,2, ZHANG Ke-yu2   

  1. 1. Department of Mathematics, Qilu Normal University, Jinan 250013, Shandong, China;
    2. School of Mathematics, Shandong University, Jinan 250100, Shandong, China
  • Received:2014-07-08 Online:2015-05-20 Published:2015-05-29

Abstract: By applying the theory of Leray-Schauder degree, the existence of nontrivial solutions for the boundary value problems of fractional differential equations 

is considered under some conditions concerning the first eigenvalue corresponding to the relevant linear operator.Here α∈(2,3]is a real number, D0+α is the standard Riemann-Liouville fractional derivative of order α.

Key words: fractional boundary value problem, Leray-Schauder degree, nontrivial solution

CLC Number: 

  • O175.8
[1] 郑祖庥.分数微分方程的发展和应用[J].徐州师范大学学报, 2008, 26(2):1-10. ZHENG Maxiu. Development and applications of fractional differential equations[J]. Jounal of Xuzhou Nomal University, 2008, 26(2): 1-10.
[2] SAMKO S, KILBAS A, MARICHEV O. Fractional integrals and derivatives: theory and applications,gordon and breach[M]. London: Taylor and Francis Ltd, 1993.
[3] PODLUBNY I. Fractional differential equations, in: mathematics in science and engineering[M]. New York: Academic Press, 1999.
[4] BAI Z. On positive solutions of a nonlocal fractional boundary value problem[J]. Nonlinear Analysis, 2010, 72(2):916-924.
[5] XU J, YANG Z. Multiple positive solutions of a singular fractional boundary value problem[J]. Applied Mathematics E-Note, 2010, 10:259-267.
[6] XU J, WEI Z, DONG W. Uniqueness of positive solutions for a class of fractional boundary value problem[J]. Appl Math Lett, 2012, 25(3):590-593.
[7] 许晓婕, 胡卫敏. 一个新的分数阶微分方程边值问题正解的存在性结果[J]. 系统科学与数学, 2012, 32(5):580-590. XU Xiaojie, HU Weimin. The existence results of positive solutions of a new fractional differential equation of boundary value problems[J]. System Science and Mathematics, 2012, 32(5):580-590.
[8] EL-SHAHED M. Positive solutions for boundary value problems of nonlinear fractional differential equation[J]. Abs Appl Anal, 2007, 2007(1):1-8.
[9] YANG X, WEI Z, DONG W. Existence of positive solutions for the boundary value problem of nonlinear fractional differential equations[J]. Commun Nonlinear Sci Numer Simulat, 2012, 17(1):85-92.
[10] LI Q, SU H, WEI Z. Existence and uniqueness result for a class of sequential fractional differential equations[J]. J Appl Math Comput, 2012, 38(1/2):641-652.
[11] YUAN C. Two positive solutions for (n-1,1)-type semipositone integral boundary value problems for coupled systems of nonlinear fractional differential equations[J]. Commun Nonlinear Sci Numer Simulat, 2012, 17(2):930-942.
[12] FENG W, SUN S, HAN Z, et al.Existence of solutions for a singular system of nonlinear fractional differential equations[J]. Comput Math Appl, 2011, 62(3):1370-1378.
[13] XU Jiafa, WEI Zhongli, DING Youzheng. Positive solutions for a boundary-value problem with Riemann-Liouville fractional derivative[J]. Lithuanian Mathematical Journal, 2012, 52(4):462-476.
[14] NUSSBAUM R. Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem in fixed point theory[J]. Lecture Notes in Math, 1981, 886:309-330.
[15] GUO D, LAKSHMIKANTHAM V. Nonlinear problems in abstract cones[M]. Orlando: Academic Press, 1988.
[1] LI Xiao-yan, XU Man. Existence and multiplicity of nontrivial solutions of Dirichlet problems for second-order impulsive differential equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 29-35.
[2] XU Man. Existence of solutions for singular φ-Laplacian of periodic boundary value problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 72-77.
[3] WU Yun1,2, HAN Ya-die1. Existence of nontrivial solutions of nonlinear elliptic equation with critical potential [J]. J4, 2013, 48(4): 91-94.
[4] LI Fan-fan, LIU Xi-ping*, ZHI Er-tao. Existence of a solution for the boundary value problem of
fractional differential equation with delay
[J]. J4, 2013, 48(12): 24-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!