JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (06): 89-94.doi: 10.6040/j.issn.1671-9352.0.2015.080

Previous Articles    

Quadratic Gröbner basis and the isomorphism of Orlik-Solomon algebras

GAO Rui-mei, SUN Yan   

  1. School of Science, Changchun University of Science and Technology, Changchun 130022, Jilin, China
  • Received:2015-02-27 Revised:2015-05-20 Online:2015-06-20 Published:2015-07-31

Abstract: The Orlik-Solomon algebra is the quotient of the exterior algebra E based on A by a homogeneous ideal I. The relations between a quadratic arrangement and a quadratic Gröbner basis are studied. And the proof of the conclusion that a central arrangement is a quadratic arrangement if and only if I has a quadratic Gröbner basis is given. We do some research on the Orlik-Solomon algebras for central and affine arrangements, and give the isomorphism theorems for the top dimensional parts of Orlik-Solomon algebras.

Key words: the quadratic arrangement, the quadratic Grö, isomorphism, bner basis, framing, Orlik-Solomon algebra

CLC Number: 

  • O189
[1] ORLIK P, TERAO H. Arrangements of hyperplanes[M]. Grundlehren der Mathematischen Wissenschaften, 300, Berlin: Springer-Verlag, 1992: 1-325.
[2] ORLIK P, SOLOMON L. Combinatorics and topology of complements of hyperplanes[J]. Inventiones Mathematicae, 1980, 56:167-189.
[3] YOSHINAGA M. The chamber basis of the Orlik-Solomon algebra and Aomoto complex[J]. Arkivför Matematik, 2009, 47(2):393-407.
[4] KÄMPF G, RÖMER T. Homological properties of Orlik-Solomon algebras[J]. Manuscripta Mathematica, 2009, 129(2):181-210.
[5] YUZVINSKY S. Orlik-Solomon algebras in algebra and topology[J]. Russian Mathematical Surveys, 2001, 56: 293-364.
[6] PEARSON K J. Cohomology of OS algebras for quadratic arrangements[J]. Lecturas Matemáticas, 2001, 22:103-134.
[7] GAO Ruimei, PEI Donghe. The supersolvable order of hyperplanes of an arrangement[J]. Communications in Mathematical Research, 2013, 29(3):231-238.
[8] 高瑞梅, 裴东河. 构形的特征多项式和超可解性的算法[J]. 山东大学学报: 理学版, 2014, 49(2):51-57. GAO Ruimei, PEI Donghe. The algorithms of characteristic polynomial and supersolvability of a hyperplane arrangement[J]. Journal of Shandong University: Natural Science, 2014, 49(2):51-57.
[9] FALK M. Line-closed matroids, quadratic algebras, and formal arrangements[J]. Advances in Applied Mathematics, 2002, 28:250-271.
[10] PAPADIMA S, YUZVINSKY S. On rational K[π,1] spaces and Koszul algebras[J]. Journal of Pure and Applied Algebra, 1999, 144:157-167.
[11] BJÖRNER A, ZIEGLER G. Broken circuit complexes: factorization and generalizations[J]. Journal of Combinatorial Theory: Series B, 1991, 5:96-126.
[12] SCHECHTMAN V V, VARCHENKO A N. Arrangements of hyperplanes and Lie algebra homology[J]. Inventiones Mathematicae, 1991, 106:139-194.
[1] YANG Xiao-fei. Characterization of L-fuzzifying topological spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 114-118.
[2] YIN Jie-jie. Solving the algebraic model of k-dominating sets of graph by Grbner basis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 130-136.
[3] WANG Dong-yan, LI Shenggang*, YANG Wen-hua. The product operations and related decompostions of fuzzy graphs [J]. J4, 2013, 48(6): 104-110.
[4] ZHAO Jie-ling, ZHANG Jian-hua. Characterizations of Jordan isomorphism on standard operator algebras [J]. J4, 2013, 48(10): 1-4.
[5] JIANG Xiao-ping. The isomorphism classes of double loop networks [J]. J4, 2012, 47(9): 88-91.
[6] JI Pei-sheng, SUN Lin, CHEN Jian-hui. Jordan multiplicative isomorphisms on Spin factors [J]. J4, 2011, 46(8): 1-3.
[7] WANG Yi-rui1, LI Sheng-gang2. Quasi-uniformities and topologies on a finite set [J]. J4, 2011, 46(8): 80-83.
[8] ZHONG Xiao-jing, LI Sheng-gang and SU Hua-fei . Pre-topologies and pre-convergence classes of family of nets [J]. J4, 2007, 42(8): 62-66 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!