JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (10): 59-63.doi: 10.6040/j.issn.1671-9352.0.2014.426

Previous Articles     Next Articles

Generalized Hom-Smash products over monoidal Hom-bialgebras

ZHAO Xiao-fan, ZHANG Xiao-hui   

  1. Department of Mathematics, Southeast University, Nanjing 210096, Jiangsu, China
  • Received:2014-09-22 Revised:2015-03-27 Online:2015-10-20 Published:2015-10-21

Abstract: The generalized Hom-smash products over monoidal Hom-bialgebras are investigated, and a generalized Hom-smash product is proved to be a left Radford's Hom-biproduct-Hom-comodule algebra.

Key words: monoidal Hom-bialgebras, generalized Hom-smash products, Radford's Hom-biproducts

CLC Number: 

  • O153.5
[1] HARTWIG J, LARSSON D, SILVESTO S. Deformations of Lie algebras using σ-derivations[J]. J Algebra, 2006, 295(2):314-361.
[2] MAKHLOUF A, SILVESTO S. Hom-algebra structures[J]. J Gen Lie Theory, 2008, 3(2):51-64.
[3] MAKHLOUF A, SILVESTO S. Hom-algebras and Hom-coalgebras[J]. J Algebra Appl, 2010, 9(4):553-589.
[4] YAU D. Hom-bialgebras and comodule algebras[J]. Int Electron J Algebra, 2010, 8(1):45-64.
[5] CAENEPPEEL S, GOYVAERTS I. Monoidal Hom-Hopf algebras[J]. Comm in Algebra, 2012, 40(6):1933-1950.
[6] CHEN Yuanyuan, WANG Zhongwei, ZHANG Liangyun. Integrals for monoidal Hom-Hopf algebras and their applications[J]. J Math Phys, 2013, 54(7):073515.1-073515.22.
[7] LIU Ling, SHEN Bingliang. Radford's biproducts and Yetter-Drinfeld modules for monoidal Hom-Hopf algebras[J]. J Math Phys, 2014, 55(3):031701.1-031701.16.
[8] 焦争鸣, 王栓宏, 赵文正. 交叉余积上的Hopf代数结构[J]. 数学学报, 2001,44(1):137-148. JIAO Zhengming, WANG Shuanhong, ZHAO Wenzheng. Hopf algebra structures on crossed coproducts[J]. Acta Mathematica Sinica, 2001, 44(1):137-148.
[9] 陈全国, 王栓宏. 弱Hopf代数上的对角交叉积及其半单性[J]. 南京大学学报:数学半年刊, 2011,28(1):16-23. CHEN Quanguo, WANG Shuanhong. Diagonal crossed products over weak-Hopf algebras and their semisimplicity[J]. J Nanjing Univ: Mathematical Biquarterly, 2011, 28(1):16-23.
[10] TAKEUCHI M. Extad(SpR,μA)≠ Br(A/k)[J]. J Algebra, 1980, 67:436-475.
[11] ZHOU Xuan, WANG Shuanhong. The duality theorem for weak Hopf algebra (co)actions[J]. Comm in Algebra, 2010, 38:4613-4632.
[12] SWEEDLE M E. Hopf algebras[M]. New York: Benjamin, 1969.
[1] ZHOU Nan, ZHANG Tao, LU Dao-wei. L-R-smash products over monoidal Hom-bialgebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 5-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!