JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (12): 102-105.doi: 10.6040/j.issn.1671-9352.0.2014.570

Previous Articles     Next Articles

The Omega result of coefficients of automorphic L-functions over different sparse sequences

WEI Hong-bin   

  1. School of Mathematical Sciences, Shandong Normal University, Jinan 250014, Shandong, China
  • Received:2014-12-22 Revised:2015-04-14 Online:2015-12-20 Published:2015-12-23

Abstract: Let k be a positive even integer, and H*k be the set of all normalized Hecke primitive eigencuspforms of weight k for Γ=SL2(Z). The Fourier expansion of fH*k at the cusp ∞ is defined by f(z)=λf(n)n(k-1)/2e2πinz, where λf(n) is the eigenvalue of the (normalized) Hecke operator Tn. The Omega result for the summatory function λf(nif(nj) is investigated. Set
E1,2(f,x)=λf(nif(nj)-cj-1x, i=1, j=2,3,
where c1, c2 is a suitable constant. Then it is proved that
E1,2(f,x)=Ω(x5/12),E1,3(f,x)=Ω(x7/16).

Key words: Omega theorem, Dirichlet series, automorphic L-functions

CLC Number: 

  • O156.4
[1] LAO Huixue. The cancellation of Fourier coefficient of cusp forms over different saparse sequences[J]. Acta Math Sin: Engl Ser, 2013, 29:1963-1972.
[2] LAO Huixue, SANKARANARAYANAN A. The average behaviour of Fourier coefficients of cusp forms over sparse sequences[J]. Proc Amer Math Soc, 2009,137:2557-2565.
[3] LAU Y-K, LV Guangshi, WU Jie, Integral power sums of Hecke eigenvalues[J]. Acta Arithmetica, 2011, 150(2):193-207.
[4] LAU Y-K, LV Guangshi. Sums of Fourier coefficients cusp forms[J]. Quart J Math Oxford, 2011, 62:687-716.
[5] KVHLEITNER M, NOWAK W G. An omega theorem for a class of arithmetic functions[J]. Math Nachr, 1994, 165:79-98.
[6] MUKHOPADHYAY A, SRINIVAS K. A zero density estimate for the Selberg class[J]. Int J Number Theory, 2007(3):263-273.
[1] WU Shi-gan. Type of dirichlet series on p-precise order in right half plane [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 58-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!