JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (12): 15-22.doi: 10.6040/j.issn.1671-9352.0.2014.549
Previous Articles Next Articles
JIAN Yuan, LIU Ding-you
CLC Number:
[1] KULKARNI D, SCHMIDT D, TSUI S K. Eigenvalues of tridiagonal pseudo-Toeplitz matrices[J]. Linear Algebra and its Applications, 1999, 297(1):63-80. [2] DA FONSECA C M. On the location of the eigenvalues of Jacobi matrices[J]. Applied Mathematics Letters, 2006, 19(11):1168-1174. [3] GOVER M J C. The eigenproblem of a tridiagonal 2-Toeplitz matrix[J]. Linear Algebra and its Applications, 1994, 197:63-78. [4] BUCHHOLZER H, KANZOW C. Bounds for the extremal eigenvalues of a class of symmetric tridiagonal matrices with applications[J]. Linear Algebra and its Applications, 2012, 436(7):1837-1849. [5] ZHAN Xingzhi. Extremal eigenvalues of real symmetric matrices with entries in an interval[J]. SIAM Journal on Matrix Analysis and Applications, 2005, 27(3):851-860. [6] LENG Huinan, HE Zhiqing. Computing eigenvalue bounds of structures with uncertain but non random parameters by a method based on perturbation theory[J]. Communications in Numerical Methods in Engineering, 2007, 23(11):973-982. [7] HORN R A, JOHNSON C R. Matrix analysis[M]. Cambridge: Cambridge University Press, 2012. [8] YUAN Quan, LENG Huinan, HE Zhiqing. A property of eigenvalue bounds for a class of symmetric tridiagonal interval matrices[J]. Numerical Linear Algebra with Applications, 2011, 18(4):707-717. [9] MOORE R E, KEARFOTT R B, Cloud M J. Introduction to interval analysis[M]. Cambridge: Cambridge University Press, 2009. [10] GELFAND I. Normierte ringe[J]. Rech. Math. [Mat. Sbornik] N.S., 1941, 9(1):3-24. |
|