JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (4): 53-58.doi: 10.6040/j.issn.1671-9352.0.2015.186
Previous Articles Next Articles
PENG Tao-tao, LIU Wei-bin
CLC Number:
[1] WALTERS P. An introduction to Ergodic theory[M] // Graduate Texts in Mathematics. New York: Springer, 2000. [2] BESICOVITCH A S. On the sum of digits of real numbers represented in the dyadic system[J]. Mathematische Annalen, 1935, 110(1):321-330. [3] EGGLESTON H G. The fractional dimension of a set defined by decimal properties, quarterly[J]. Journal of Mathematics Oxford Series, 1949, 47:31-40. [4] XIE Y, WEN Z. Dimensions of modified Besicovitch-Eggleston sets[J]. Science in China, 2006, 49(2):245-254. [5] 文志英. 分形几何的数学基础[M]. 上海:上海科技教育出版社,2000. WEN Zhiying. Mathematical foundation of fractal geometry[M]. Shanghai: Shanghai Scientific and Technological Education Publishing House, 2000. [6] SHERESHEVSKY M A. Ergodic properties of certain surjective cellular automata[J]. Monatshefte Für Mathematik, 1992, 114(3-4):305-316. [7] HEDLUND G A. Endomorphisms and automorphisms of the shift dynamical system[J]. Mathematical Systems Theory, 1969, 3(4):320-375. [8] LIND Douglas, MARCUS Brian. An introduction to symbolic dynamics and coding[M]. Cambridge: Cambridge University Press, 1995. |
[1] | LI Wang,SUN Yong-zheng, . Cellular automata based simulation of new product market diffusion [J]. J4, 2008, 43(3): 92-96 . |
|