JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (11): 92-94.doi: 10.6040/j.issn.1671-9352.0.2017.008
Previous Articles Next Articles
WANG Xiao-qing, LIANG Li*
CLC Number:
[1] XU Jinzhong. Flat covers of modules[M] // Lecture Notes in Mathematics, vol. 1634. New York: Springer-Verlag, 1996. [2] YAN Hangyu. Strongly cotorsion(torsion-free)modules and cotorsion pairs[J]. Bulletin of the Korean Mathematical Society, 2010, 47: 1041-1052. [3] HUANG Zhaoyong. Gorenstein injective and strongly cotorsion modules[J]. Israel Journal of Mathematics, 2013, 198: 215-228. [4] ŠTOVÍCEK J. On purity and applications to coderived and singularity categories[J]. Preprint, arXiv: 1412. 1615.v1. [5] CHRISTENSEN L W, KÖKSAL F, LIANG Li. Gorenstein dimensions of unbounded complexes and change of base(with an appendix by Driss Bennis)[J]. Science China(Mathematics), 2017, 60:401-420. [6] ENOCHS E E, JENDA O M G. Relative homological algebra[M] // de Gruyter Expositions in Mathematics: vol. 30. Berlin: Walter de Gruyter Co, 2000. [7] DING Nanqing, CHEN Jianlong. The flat dimension of injective modules[J]. Manuscripta Mathematica, 1993, 78:165-177. [8] EMMANOUIL I, TALELLI O. On the at length of injective modules[J]. Journal of the London Mathematical Society, 2011, 84:408-432. [9] AVRAMOV L L, FOXBY H B. Homological dimensions of unbounded complexes[J]. Journal of Pure and Applied Algebra, 1991, 71:129-155. |
[1] | FENG Xiao,ZHANG Shun-hua* . Left G-regular rings [J]. J4, 2007, 42(8): 51-54 . |
|