JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (2): 39-43.doi: 10.6040/j.issn.1671-9352.0.2016.125

Previous Articles     Next Articles

Sumsets and subsets of Bohr sets in finite abelian groups

LI Fang, GUANG Ai-xia, LI Guo-quan*   

  1. College of Mathematics Science, Tianjin Normal University, Tianjin 300387, China
  • Received:2016-03-25 Online:2017-02-20 Published:2017-01-18

Abstract: Let G be a finite abelian group and A,B⊂G. It is proved that there exist a Bohr set B(Γ,δ)and a constant D>0 such that A+B contains a translate of any set T⊂B(Γ,δ)of size at most D.

Key words: sumset, dual group, Bohr set

CLC Number: 

  • O157.1
[1] BOURGAIN J. Roth’s theorem on progressions revisited[J]. J Anal Math, 2008, 104:155-192.
[2] CROOT E, ŁABA I, SISASK O. Arithmetic progressions in sumsets and Lp-almost-periodicity[J]. Combin Probab Comput, 2013, 22:351-365.
[3] GREEN B. Arithmetic progressions in sumsets[J]. Geom Funct Anal, 2002, 12: 584-597.
[4] RUZSA I. Arithmetic progressions in sumsets[J]. Acta Arith, 1991, 60:191-202.
[5] SANDERS T. Additive structures in sumsets[J]. Math Proc Cambridge Philos Soc, 2008, 144:289-316.
[6] GREEN B. Finite field models in arithmetic combinatorics[M] //Surveys in Combinatorics 2005. Cambridge: Cambridge University Press, 2005:1-27.
[7] TAO T, VU V. Additive combinatorics[M]. Cambridge: Cambridge University Press, 2006.
[1] CAO Ya-meng, LI Jiao, LI Guo-quan. On sumsets and translates of vector subspaces over finite fields [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 7-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!