JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (4): 21-25.doi: 10.6040/j.issn.1671-9352.0.2016.329

Previous Articles     Next Articles

Convergence properties of the kernel-type density estimator under WOD dependent samples

HU Xue-ping, ZHANG Hong-mei   

  1. School of Mathematics and Computational Science, Anqing Normal University, Anqing 246133, Anhui, China
  • Received:2016-07-01 Online:2017-04-20 Published:2017-04-11

Abstract: Let {Xn,n≥1} be an identically distributed WOD random sequence with a commen density functiong f(x). Based on the Rosenthal-type inequality and Bernstein-type inequality for WOD sequence, the kernel estimator for density function f(x)was investigated under suitable conditions, and the consistency in r order mean, the pointwise strong consistency and uniform consistency in L1 were obtained.

Key words: WOD samples, consistency in r order mean, kernel estimator, pointwise strong consistency

CLC Number: 

  • O212
[1] ROSENBLATT M. Remarks on some nonparametric estimates of a density function[J]. The Annals of Mathematical Statistics, 1956, 27(3): 832-837.
[2] PARZEN E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962, 33: 1065-1076.
[3] 陈希孺, 方兆本, 李国英,等. 非参数统计[M]. 上海:上海科技出版社, 1989. CHEN Xiru, FANG Zhaoben, LI Guoying, et al. Nonparametric statistics[M]. Shang Hai: Shang Hai Science and Technology Press, 1989.
[4] 韦来生. NA样本概率密度函数核估计的相合性[J]. 系统科学与数学, 2001, 21(1): 79-87. WEI Laisheng. The consistencies for the kernel-type density estimation in the case of NA samples[J]. Journal of System Science and Mathematical Science, 2001, 21(1): 79-87.
[5] 刘永辉,吴群英.ND样本最近邻密度估计的相合性[J].吉林大学学报(理学版), 2012,50(6):1141-1145. LIU Yonghui, WU Qunying. Consistency of nearest neighbor estimator of density function for ND samples[J]. Journal of Jilin University(Science Edition), 2012, 50(6): 1141-1145.
[6] WANG Kaiyong, WANG Yuebao, GAO Qingwu. Uniform asymptotics for the finite-time ruin probability of a new dependent risk model with a constant interest rate[J]. Methodology and Computing in Applied Probability, 2013, 15(1): 109-124.
[7] JOAG-DEV K, PROSCHAN F. Negative association of random variables with applications[J]. Annals of Statistics, 1983, 11: 286-295.
[8] LIU Li. Precise large deviations for dependent random variables with heavy tails[J]. Statistics and Probability Letters, 2009, 79(9):1290-1298.
[9] 李永明, 应锐, 蔡际盼,等. WOD 样本密度函数和失效率函数递归核估计的逐点强相合性[J]. 吉林大学学报(理学版), 2015, 53(6): 1134-1138. LI Yongming, YING Rui, CAI Jipan, et al. Pointwise strong consistency of recursive kernel estimator for probability density and failure rate funciton under WOD sequence[J]. Journal of Jilin University(Science Edition), 2015, 53(6): 1134-1138.
[10] WANG Xuejun, XU Chen, HU Tienchung, et al. On complete convergence for widely orthant dependent random variables and its applications in nonparametric regression models[J]. TEST, 2014, 23(3): 607-629.
[11] SHEN Anting. Bernstein-type inequality for widely dependent sequence and its application to non-parametric regression models[J]. Abstract and Applied Analysis, 2013(1): 309-338.
[12] CHUNG K L. A course in probability theory[M]. New York: Academic Press, 1974.
[1] LI Yong-ming, DENG Shao-jian, JIANG Wei-hong. Consistencies of recursive estimator of a probability density for extended negatively dependent samples [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 54-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!