JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (4): 21-25.doi: 10.6040/j.issn.1671-9352.0.2016.329
Previous Articles Next Articles
HU Xue-ping, ZHANG Hong-mei
CLC Number:
[1] ROSENBLATT M. Remarks on some nonparametric estimates of a density function[J]. The Annals of Mathematical Statistics, 1956, 27(3): 832-837. [2] PARZEN E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962, 33: 1065-1076. [3] 陈希孺, 方兆本, 李国英,等. 非参数统计[M]. 上海:上海科技出版社, 1989. CHEN Xiru, FANG Zhaoben, LI Guoying, et al. Nonparametric statistics[M]. Shang Hai: Shang Hai Science and Technology Press, 1989. [4] 韦来生. NA样本概率密度函数核估计的相合性[J]. 系统科学与数学, 2001, 21(1): 79-87. WEI Laisheng. The consistencies for the kernel-type density estimation in the case of NA samples[J]. Journal of System Science and Mathematical Science, 2001, 21(1): 79-87. [5] 刘永辉,吴群英.ND样本最近邻密度估计的相合性[J].吉林大学学报(理学版), 2012,50(6):1141-1145. LIU Yonghui, WU Qunying. Consistency of nearest neighbor estimator of density function for ND samples[J]. Journal of Jilin University(Science Edition), 2012, 50(6): 1141-1145. [6] WANG Kaiyong, WANG Yuebao, GAO Qingwu. Uniform asymptotics for the finite-time ruin probability of a new dependent risk model with a constant interest rate[J]. Methodology and Computing in Applied Probability, 2013, 15(1): 109-124. [7] JOAG-DEV K, PROSCHAN F. Negative association of random variables with applications[J]. Annals of Statistics, 1983, 11: 286-295. [8] LIU Li. Precise large deviations for dependent random variables with heavy tails[J]. Statistics and Probability Letters, 2009, 79(9):1290-1298. [9] 李永明, 应锐, 蔡际盼,等. WOD 样本密度函数和失效率函数递归核估计的逐点强相合性[J]. 吉林大学学报(理学版), 2015, 53(6): 1134-1138. LI Yongming, YING Rui, CAI Jipan, et al. Pointwise strong consistency of recursive kernel estimator for probability density and failure rate funciton under WOD sequence[J]. Journal of Jilin University(Science Edition), 2015, 53(6): 1134-1138. [10] WANG Xuejun, XU Chen, HU Tienchung, et al. On complete convergence for widely orthant dependent random variables and its applications in nonparametric regression models[J]. TEST, 2014, 23(3): 607-629. [11] SHEN Anting. Bernstein-type inequality for widely dependent sequence and its application to non-parametric regression models[J]. Abstract and Applied Analysis, 2013(1): 309-338. [12] CHUNG K L. A course in probability theory[M]. New York: Academic Press, 1974. |
[1] | LI Yong-ming, DENG Shao-jian, JIANG Wei-hong. Consistencies of recursive estimator of a probability density for extended negatively dependent samples [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 54-59. |
|