JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (11): 115-126.doi: 10.6040/j.issn.1671-9352.0.2019.358
WANG Ying-mei1, WANG Zhen-dong2, LI Gong-sheng1
CLC Number:
[1] JUNG M, BRESSON X, CHAN T F, et al. Nonlocal Mumford-Shah regularizers for color image restoration[J]. IEEE Transactions on Image Processing, 2011, 20(6):1583-1598. [2] TIKHONOV A N, ARSENIN V Y. Solutions of ill-posed problems[M]. New York: Wiley, 1977. [3] RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D, 1992, 60(1/2/3/4):259-268. [4] YOU Yuli, XU Wenyuan, TANNENBAUM A, et al. Behavioral analysis of anisotropic diffusion in image processing[J]. IEEE Transactions on Image Processing, 1996, 5(11):1539-1553. [5] STRONG D M, CHAN T F. Edge-preserving and scale-dependent properties of total variation regularization[J]. Inverse Problems, 2003, 19(6):165-187. [6] NIKOLOVA M. Weakly constrained minimization: application to the estimation of images and signals-involving constant regions[J]. Journal of Mathematical Imaging and Vision, 2004, 21(2):155-175. [7] BLOMGREN P, CHAN T F, MULET P, et al. Total variation image restoration: numerical methods and extensions[C] // International Conference on Image Processing. New York: IEEE, 1997: 384-387. [8] BLOMGREN P, CHAN T F. Color TV: total variation methods for restoration of vector-valued images[J]. IEEE Transactions on Image Processing, 1998, 7(3):304-309. [9] CHEN Yunmei, LEVINE S, RAO M. Variable exponent, linear growth functionals in image restoration[J]. SIAM Journal on Applied Mathematics, 2006, 66(4):1383-1406. [10] LI Fang, LI Zhibin, PI Ling. Variable exponent functionals in image restoration[J]. Applied Mathematics and Computation, 2010, 216(3):870-882. [11] NINNESS B. Estimation of 1/f noise[J]. IEEE Transactions on Information Theory, 1998, 44(1):32-46. [12] UNSER M. Splines, a perfect fit for signal and image processing[J]. IEEE Signal Processing Magazine, 1999, 16(6):22-38. [13] UNSER M, BLU T. Fractional splines and wavelets[J]. SIAM Review, 2000, 42(1):43-67. [14] CUESTA E, FINAT J. Image processing by means of a linear integro-differential equation[C] // International Conference Visualization, Imaging and Image Processing. Benalmadena, Spain: IASTED, 2003: 438-442. [15] DUITS R, FELSBERG M, FLORACK L. α scale spaces on a bounded domain[C] // International Conference on Scale Space Methods in Computer Vision. Berlin: Springer, 2003: 494-510. [16] DIDAS S, BURGETH B, IMIYA A, et al. Regularity and scale-space properties of fractional high order linear filtering[C] // International Conference on Scale Space Methods in Computer Vision. Berlin: Springer, 2005: 13-25. [17] BAI Jian, FENG Xiangchu. Fractional-order anisotropic diffusion for image denoising[J]. IEEE Transactions on Image Processing, 2007, 16(10):2492-2502. |
[1] | . Existence of ground states for linear coupled systems of lower critical Choquard type [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 62-67. |
[2] | ZHANG Nian, JIA Gao. Existence of infinitely many high energy solutions of a class of fourth-order elliptic equations with nonlocal terms [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(6): 81-87. |
[3] | FANG Xiao-zhen, SUN Ai-wen, WANG Min, SHU Li-sheng. Boundedness of generalized multilinear operators on variable exponent spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 6-16. |
[4] | WU Yi-jia, CHENG Rong. Infinitely many nontrival solutions for a class of Schrödinger equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(2): 84-88. |
[5] | CHEN Li-zhen, FENG Xiao-jing, LI Gang. Existence of nontrival solutions for a class of Schrödinger-Poisson systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 74-78. |
[6] | XIN Yin-ping, TAO Shuang-ping. Boundedness of Marcinkiewicz integrals operators with variable kernels on Herz-type Hardy spaces with variable exponent [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 38-43. |
[7] | ZHANG Shen-gui. Multiple solutions of Navier boundary value problem for fourth-order elliptic equation with variable exponents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 32-37. |
[8] | ZHAO Huan, ZHOU Jiang. Commutators of multilinear Calderón-Zygmund operator on Herz-type Hardy spaces with variable exponent [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 42-50. |
[9] | LU Qiang-de, TAO Shuang-ping. Boundedness of commutators of Calderón-Zygmund operators and fractional integrals in homogeneous grand variable exponent Lebesgue spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 54-58. |
[10] | MA Xiao-jie, ZHAO Kai. Boundedness of commutators of the fractional Hardy operators on weighted spaces with variable exponent [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 106-110. |
[11] | JIANG Jing, GAO Qing-ling, ZHANG Ke-yu. Existence of weak solutions for a second order Dirichlet boundary value problem on time scales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 99-103. |
[12] | WANG Jie, QU Meng, SHU Li-sheng. Boundedness of the Littlewood-Paley operators and cummutators on the Herz spaces with variable exponents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 9-18. |
[13] | WANG Jin-ping, ZHAO Kai. Lipschitz commutators of fractional integrals on Herz-type spaces with variable exponents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(10): 6-10. |
[14] | MA Jie, PAN Zhen-kuan*, WEI Wei-bo, GUO Kai. The fast split bregman algorithm for variational image inpainting model with euler’s elastic [J]. J4, 2013, 48(05): 70-77. |
[15] | . Study on conditions for the existence of bound states in central field with variational method [J]. J4, 2009, 44(5): 62-66. |
|