JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (12): 86-96.doi: 10.6040/j.issn.1671-9352.0.2018.710
QIAN Kun, LIU Bao-qing, LI Guo-quan*
CLC Number:
[1] SÁRKÖZY A. On difference sets of sequences of integers: I[J]. Acta Math Hungar, 1978, 31:125-149. [2] KAMAE T, MENDÈS FRANCE M. Van der Corputs difference theorem[J]. Israel J Math, 1978, 31:335-342. [3] LUCIER J. Intersective sets given by a polynomial[J]. Acta Arith, 2006, 123:57-95. [4] RICE A J. Improvements and extensions of two theorems of Sárközy[M]. Georgia: University of Georgia, 2012. [5] ROTH K F. On certain sets of integers[J]. J London Math Soc, 1953, 28:104-109. [6] L(^overE)T H. Problems and results on intersective sets[M] // Combinatorial and additive number theory: CANT 2011 and 2012. New York: Springer, 2014: 115-128. [7] YAMAGISHI S. Diophantine approximation of polynomials over Fq[t] satisfying a divisibility condition[J]. Int J Number Theory, 2016, 12:1371-1390. [8] L(^overE)T H, LIU Y R. On sets of polynomials whose difference set contains no squares[J]. Acta Arith, 2013, 161:127-143. [9] GREEN B. Sárközys theorem in function fields[J]. Q J Math, 2017, 68:237-242. [10] LANG S. Algebra[M]. New York: Springer-Verlag, 2002. [11] CHUDNOVSKY G V. Contributions to the theory of transcendental numbers[M]. Providence: American Mathematical Society, 1984. [12] HASSE H. Number theory[M]. Berlin Heidelberg: Springer-Verlag, 2002. [13] 黎娇,曹亚萌,李国全.函数域中完全指数和的估计[J].山东大学学报(理学版), 2019, 54(4):91-99. LI Jiao, CAO Yameng, LI Guoquan. Complete exponential sum estimates in function fields[J]. Journal of Shandong University(Natural Science), 2019, 54(4):91-99. [14] KUBOTA R. Warings problem for Fq[x] [J]. Diss Math, 1974, 117:1-60. |
[1] | LI Jiao, CAO Ya-meng, LI Guo-quan. Complete exponential sum estimates in function fields [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 91-99. |
|