JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (12): 86-96.doi: 10.6040/j.issn.1671-9352.0.2018.710

Previous Articles    

A note on intersective polynomials in function fields

QIAN Kun, LIU Bao-qing, LI Guo-quan*   

  1. College of Mathematics Science, Tianjin Normal University, Tianjin 300387, China
  • Published:2019-12-11

Abstract: Let Z denote the ring of rational integers. Let L be a field, and let p be its characteristic. Let f(x)=∑nj=0ajxj∈L[x], the polynomial ring over L. Suppose that f(x)=a∏ri=1(x-ηi)ei over some algebraic closure of L, where a∈L, all the ηi are distinct, and r,e1,e2,…,er are positive integers with r≥2 and n=∑rj=1ej. The semidiscriminant Δ(f) of f is defined by Δ(f)=a2n-11≤i,j≤ri≠jij)ei ej. It is proved that if n, then there exist a positive integer m with m|n! and a polynomial G∈Z[x0,x1,…,xn], which depend only on the vector (e1,e2,…,er), such that Δ(f)=1/mG(a0,a1,…,an). This result is applied to investigate a question on intersective polynomials over the ring L[x], where L is a finite field.

Key words: function field, semidiscriminant, intersective polynomial

CLC Number: 

  • O156
[1] SÁRKÖZY A. On difference sets of sequences of integers: I[J]. Acta Math Hungar, 1978, 31:125-149.
[2] KAMAE T, MENDÈS FRANCE M. Van der Corputs difference theorem[J]. Israel J Math, 1978, 31:335-342.
[3] LUCIER J. Intersective sets given by a polynomial[J]. Acta Arith, 2006, 123:57-95.
[4] RICE A J. Improvements and extensions of two theorems of Sárközy[M]. Georgia: University of Georgia, 2012.
[5] ROTH K F. On certain sets of integers[J]. J London Math Soc, 1953, 28:104-109.
[6] L(^overE)T H. Problems and results on intersective sets[M] // Combinatorial and additive number theory: CANT 2011 and 2012. New York: Springer, 2014: 115-128.
[7] YAMAGISHI S. Diophantine approximation of polynomials over Fq[t] satisfying a divisibility condition[J]. Int J Number Theory, 2016, 12:1371-1390.
[8] L(^overE)T H, LIU Y R. On sets of polynomials whose difference set contains no squares[J]. Acta Arith, 2013, 161:127-143.
[9] GREEN B. Sárközys theorem in function fields[J]. Q J Math, 2017, 68:237-242.
[10] LANG S. Algebra[M]. New York: Springer-Verlag, 2002.
[11] CHUDNOVSKY G V. Contributions to the theory of transcendental numbers[M]. Providence: American Mathematical Society, 1984.
[12] HASSE H. Number theory[M]. Berlin Heidelberg: Springer-Verlag, 2002.
[13] 黎娇,曹亚萌,李国全.函数域中完全指数和的估计[J].山东大学学报(理学版), 2019, 54(4):91-99. LI Jiao, CAO Yameng, LI Guoquan. Complete exponential sum estimates in function fields[J]. Journal of Shandong University(Natural Science), 2019, 54(4):91-99.
[14] KUBOTA R. Warings problem for Fq[x] [J]. Diss Math, 1974, 117:1-60.
[1] LI Jiao, CAO Ya-meng, LI Guo-quan. Complete exponential sum estimates in function fields [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 91-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!