JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (8): 42-49.doi: 10.6040/j.issn.1671-9352.0.2019.125
Previous Articles Next Articles
WANG Hai-quan
CLC Number:
[1] FU Ying, QU Changzheng. Well-posedness and blow-up solution for a new coupled Camassa-Holm equations[J]. Journal of Mathematical Physics, 2009, 50(1): 012906. [2] ZHU Mingxuan. Blow-up, global existence and persistence properties for the coupled Camassa-Holm equation[J]. Mathematical Physics Analysis and Geomery, 2011, 14(3): 197-209. [3] TIAN Lixin, YAN Wanfeng, GUI Guilong. On the local well-posedness and blow-up solution to coupled Camassa-Holm equations in Besov spaces[J]. Journal of Mathematical Physics, 2012, 53(1): 013701. [4] LIU Xingxing. Local well-posedness of a coupled Camassa-Holm system in critical spaces[J]. Zeitschrift für Analysis und ihre Anwendungen, 2015, 34(1): 43-59. [5] HIMONAS A, KENIG C, MISIOŁEK G. Non-uniform dependence for the periodic CH equation[J]. Communications in Partial Differential Equations, 2010, 35(6): 1145-1162. [6] HIMONAS A, MISIOŁEK G. High-frequency smooth solutions and well-posedness of the Camassa-Holm equation[J]. Interbational Mathematics Research Notices, 2005, 2005(51): 3135-3151. [7] TANG Hao, ZHAO Yongye, LIU Zhengrong. A note on the solution map for the periodic Camassa-Holm equation[J]. Applicable Analysis, 2014, 93(8): 1745-1760. [8] BAHOURI H, CHEMIN J, DANCHIN R. Fourier analysis and nonlinear partial differential equations[M]. Berlin: Springer-Verlag, 2011. [9] DANCHIN R. A few remarks on the Camassa-Holm equation[J]. Differentialand Integral Equations, 2001, 14(8): 953-988. [10] LI Jinlu, YIN Zhaoyang. Well-posedness and analytic solutions of two-component Euler-Poincaré system[J]. Monatshefte für Mathematik, 2017, 183(3): 509-537. [11] DANCHIN R. A note on well-posedness for Camassa-Holm equation[J]. Journal of Differential Equations, 2003, 192(2): 429-444. [12] DANCHIN R. Fourier analysis methods for PDEs[R/OL].(2005-11-14)[2019-01-20]. https://m.doc88.com/p-9079718125760.html. |
[1] | CAO Kai-kai. Wavelet estimation for anisotropic density functions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(6): 99-105. |
|