JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (10): 20-23.doi: 10.6040/j.issn.1671-9352.0.2019.763
Previous Articles Next Articles
CAO Fa-sheng
CLC Number:
[1] BLYTH T, VARLET J. Principal congruences on some lattice-ordered algebras[J]. Discrete Mathematics, 1990, 81(3):323-329. [2] BURRIS S, SANKAPPANAVAR H P. A course in universal algebra[M]. New York: Springer-Verlag, 1981. [3] CELANI S A. Modal Tarski algebras[J]. Reports on Mathematical Logic, 2005, 39(39):113-126. [4] FANG Jie, SUN Zhongju. Principal congruences on S1-algebras[J]. Algebra Colloq, 2013, 20(3):427-434. [5] GRÄTZER G. Universal algebra[M]. New York: Springer-Verlag, 1979. [6] JANSANA R, MARTÍN H J S. On principal congruences in distributive lattices with a commutative monoidal operation and an implication[J]. Studia Logica, 2018(3):1-24. [7] LAKSER H. Principal congruences of pseudocomplemented distributive lattices[J]. Proceedings of the American Mathematical Society, 1973, 37(1):32-36. [8] LUO C. A special kind of principal congruences on MS-algebras[J]. Acta Mathematica Scientia, 2008, 28(2):315-320. [9] SAN MARTÍN Hernán Javier. Principal congruences in weak Heyting algebras[J]. Algebra Universalis, 2016, 75:405-418. [10] SAN MARTÍN Hernán Javier. On congruences in weak implicative semi-lattices[J]. Soft Computing, 2016, 21(12):1-10. [11] PALMA C, SANTOS R. Principal congruences on semi-de morgan algebras[J]. Studia Logica, 2001, 67(1):75-88. [12] SANKAPPANAVAR H P. Principal congruences on psdudo-complemented on Morgan algebras[J]. Proc Amer Math Soc, 1987(33):3-11. [13] SANKAPPANAVAR H P, VAZ DE CARVALHO J. Congruence properties of pseudocomplemented de Morgan algebras[J]. Mathematical Logic Quarterly, 2014, 60(6):425-436. [14] SANKAPPANAVA H P. Principal congruences of double demi-p-lattices[J]. Algebra Universalis, 1990, 27(2):248-253. [15] 曹发生,王驹,蒋运承.格L的元与它的主同余的关系[J].西南大学学报(自然科学版), 2009,31(12):87-91. CAO Fasheng, WANG Ju, JIANG Yuncheng. The relationship of element of lattice L and principal congruence on it[J]. Journal Southwest University(Nature Science Edition), 2009, 31(12):87-91. [16] 曹发生,王驹,蒋运承.有单位元的环的主同余[J].江西师范大学学报(自然科学版), 2010, 34(2):192-194. CAO Fasheng, WANG Ju, JIANG Yuncheng. Principal Congruence on ring with identity[J]. Journal of Jiangxi Normal University(Nature Science Edition), 2010, 34(2):192-194. [17] 曹发生. 布尔格的主同余[J].四川师范大学学报(自然科学版), 2012,35(2):236-239. CAO Fasheng. Principal congruence on Boolean lattices[J]. Journal of Sichuan Normal University(Nature Science Edition), 2012, 35(2):236-239. [18] 曹发生. Hamilton群的主同余[J].数学的实践与认识, 2013, 43(15):255-258. CAO Fasheng. Principal congruence on Hamilton groups[J]. Mathematics in Practice and Theory, 2013, 43(15):255-258. [19] 曹发生,肖方. 模态代数的主同余[J].山东大学学报(理学版), 2020,55(2):104-108. CAO Fasheng, XIAO Fang. Principal congruences on modal algebras[J]. Journal of Shandong University(Nature Science), 2020, 55(2):104-108. [20] 叶林, 曹发生. 格的标准元和分配元的主同余[J].山东大学学报(理学版), 2010,45(11):63-67. YE Lin, CAO Fasheng. Principal congruence on the standard and distributive elements of lattice[J]. Journal of Shandong University(Nature Science), 2010, 45(11):63-67. |
[1] | CAO Fa-sheng, XIAO Fang. Principal congruences on modal algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(2): 104-108. |
[2] | YE Lin1, CAO Fa-sheng2. Principal congruence on the standard and distributive elements of a lattice [J]. J4, 2010, 45(11): 63-66. |
|