JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (10): 24-30.doi: 10.6040/j.issn.1671-9352.0.2020.060
Previous Articles Next Articles
ZHANG Cui-ping, LIU Ya-juan*
CLC Number:
[1] AUSLANDER M, BRIDGER M. Stable module theory[M]. Providence, RI: Amer Math Soc, 1969. [2] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin: Walter de Gruyter, 2000. [3] BENNIS D, MAHDOU N. Strongly Gorenstein projective, injective and flat modules[J]. Journal of Pure and Applied Algebra, 2007, 210(4):437-445. [4] YANG Xiaoyan, LIU Zhongkui. Strongly Gorenstein projective, injective and flat modules[J]. Journal of Pure and Applied Algebra, 2008, 320:2659-2674. [5] HOLM H, WHITE D. Foxby equivalence over associative rings[J]. Math Kyoto Univ, 2007, 47:781-808. [6] HOLM H, JRGENSEN P. Semi-dualizing modules and related Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2006, 205(2):423-445. [7] WANG Zhanping, GUO Shoutao, MA Haiyu. Stability of Gorenstein modules with respect to a semidualizing module[M]. J Math, 2017, 37(6):1143-1153. [8] ZHANG Wanru, LIU Zhongkui, YANG Xiaoyan. Foxby equivalences associated to strongly Gorenstein modules[J]. Kodai Math J, 2018, 41:397-412. [9] 李金兰,梁春丽. 强Gorenstein C -平坦模[J].山东大学学报(理学版),2017,52(12):25-31. LI Jinlan, LIANG Chunli. Strong Gorenstein C -flat modules[J]. Journal of Shangdong University(Natural Science), 2017, 52(12):25-31. [10] YANG Xiaoyan, LIU Zhongkui. C -Gorenstein projective, injective and flat modules[J]. Czechoslovak Mathematical Journal, 2010, 60(135):1109-1129. [11] XING Jianmin, XING Rufeng. Gorenstein projective, injective and flat modules relative to semidualizing modules[J]. Internation Scholarly and Scientific Research Innovation, 2014, 8(2):359-364. [12] SATHER-WAGSTAFF S, SHARIF T, WHITE D. AB-Contexts and stability for Gorenstein flat modules with respect to semidualizing modules[J]. Algebr Representation Theory, 2011, 14:403-428. [13] HOLM H. Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2004,189:167-193. [14] KASCH F,WALLACE D A R. Modules and rings[M]. New York: Academic Press, 1982. [15] LAM T Y. Lectures on modules and rings[M] //Graduate Texts in Math. New York: Springer-Verlag, 1999. [16] ROTMAN JJ. An introduction to homological algebra[M]. New York: Academic Press, 1979. |
[1] | LUO Xiao-qiang, TAN Ling-ling, XING Jian-min. On homological properties of C-torsionless and C-reflexive modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 72-79. |
[2] | PAN Xiao-ling, LIANG Li. Tate homology of modules of finite Gorenstein flat dimension with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(12): 102-105. |
[3] | CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89. |
[4] | YANG Chun-hua. A note on the Gc-injective dimension of a complex [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 82-86. |