JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (2): 118-126.doi: 10.6040/j.issn.1671-9352.0.2019.441
YANG Yang, WU Bao-wei*, WANG Yue-e
CLC Number:
[1] SUN Ximing, WANG Wei, LIU Guoping, et al. Stability analysis for linear switched systems with time-varying delay[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(2):528-533. [2] ZHAO Xudong, YIN Shen, LI Hongyi, et al. Switching stabilization for a class of slowly switched systems[J]. IEEE Transactions on Automatic Control, 2015, 60(1):221-226. [3] XIANG W M, JOHNSON T T. Event-triggered control for continuous-time switched linear systems[J]. IET Control Theory and Applications, 2017, 11(11):1694-1703. [4] WANG Y E, KARIMI H R, WU D. Conditions for the stability of switched systems containing unstable subsystems[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66(4):617-621. [5] LI J H, MA R C, DIMIROVSKI G M, et al. Dwell-time-based stabilization of switched linear singular systems with all unstable-mode subsystems[J]. Journal of the Franklin Institute, 2017, 354(7):2712-2724. [6] FENG Nana, WU Baowei, LIU Lili, et al. Exponential stability of output-based event-triggered control for switched singular systems[J/OL]. Asian Journal of Control, [2019-01-09]. https://doi.org/10.1002/asjc.2035. [7] MA Guoqi, LIU Xinghua, QIN Linlin, et al. Finite-time event-triggered H∞ control for switched systems with time-varying delay[J]. Neurocomputing, 2016, 207:828-842. [8] MA Yajing, WU Baowei, WANG Yuee, et al. Input-output finite time stability of fractional order linear systems with 0 <α<1[J]. Transactions of the Institute of Measurement and Control, 2017, 39(5):653-659. [9] AMATO F, TOMMASI G D, PIRONTI A. Input-output finite-time stabilization of impulsive linear systems: necessary and sufficient conditions[J]. Nonlinear Analysis: Hybrid Systems, 2016, 19:93-106. [10] GUO Yang, YAO Yu, WANG Shicheng, et al. Input-output finite-time stabilization of linear systems with finite-time boundedness[J]. ISA Transactions, 2014, 53(4):977-982. [11] LIANG Jinxia, WU Baowei, WANG Yuee, et al. Input-output finite-time stability of fractional-order positive switched systems[J]. Circuits, Systems, and Signal Processing, 2019, 38(4):1619-1638. [12] ZONG Guangdeng, WANG Ruihua, ZHENG Weixing, et al. Finite-time H∞ control for discrete-time switched nonlinear systems with time delay[J]. International Journal of Robust and Nonlinear Control, 2015, 25(6):914-936. [13] 张耀利, 吴保卫, 王月娥, 等. 切换奇异系统的有限时间稳定[J]. 物理学报, 2014, 63(17):32-41. ZHANG Yaoli, WU Baowei, WANG Yuee, et al. Finite-time stability for switched singular systems[J]. Acta Physica Sinica, 2014, 63(17):32-41. [14] AMATO F, AMBROSINO R, COSENTINO C, et al. Input-output finite time stabilization of linear systems[J]. Automatica, 2010, 46(9):1558-1562. [15] 冯娜娜, 吴保卫. 切换奇异系统事件触发控制的输入输出有限时间稳定[J]. 山东大学学报(理学版), 2019, 54(3):75-84. FENG Nana, WU Baowei. Input-output finite time stability for event-triggered control of switched singular systems[J]. Journal of Shandong University(Natural Science), 2019, 54(3):75-84. [16] 梁金霞, 吴保卫. 分数阶切换系统的输入输出有限时间稳定[J]. 纺织高校基础科学学报, 2018, 31(4):490-496. LIANG Jinxia, WU Baowei. Input-output finite-time stability of fractional order switched systems[J]. Basic Sciences Journal of Textile Universities, 2018, 31(4):490-496. [17] QI Yiwen, CAO Zheng, LIU Jun. Observer-based event-triggered H∞ control for switched linear systems[C] // 11th Asian Control Conference(ASCC). Gold Coast, Australia: IEEE, 2017: 2490-2495. [18] REN Hangli, ZONG Guangdeng, LI Tieshan. Event-triggered finite-time control for networked switched linear systems with asynchronous switching[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(11):1874-1884. [19] TABUADA P. Event-triggered real-time scheduling of stabilizing control tasks[J]. IEEE Transactions on Automatic Control, 2007, 52(9):1680-1685. [20] WANG Xin, MA Dan. Event-triggered control for continuous-time switched systems[C] // 27th Chinese Control and Decision Conference(CCDC). Qingdao: IEEE, 2015: 1143-1148. [21] LI Taifang, FU Jun, DENG Fang, et al. Stabilization of switched linear neutral systems: an event-triggered sampling control scheme[J]. IEEE Transactions on Automatic Control, 2018, 63(10):3537-3544. [22] 段长杰, 吴保卫. 基于事件触发的不确定时滞切换系统的有限时间稳定[J]. 纺织高校基础科学学报, 2018, 31(3):356-362. DUAN Changjie, WU Baowei. Finite-time stability for uncertain delay switched systems based on event-triggered[J]. Basic Sciences Journal of Textile Universities, 2018, 31(3):356-362. [23] WANG Yuee, NIU Ben, WU Baowei, et al. Asynchronous switching for switched nonlinear input delay systems with unstable subsystems[J]. Journal of the Franklin Institute, 2018, 355(5):2912-2931. [24] WANG Xiaohong, ZONG Guangdeng, SUN Haibin. Asynchronous finite-time dynamic output feedback control for switched time-delay systems with non-linear disturbances[J]. IET Control Theory and Applications, 2016, 10(10):1142-1150. [25] QI Yiwen, ZENG Pengyu, BAO Wen, et al. Event-triggered robust H∞ control for uncertain switched linear systems[J]. International Journal of Systems Science, 2017, 48(15):1-14. |
[1] | FENG Na-na, WU Bao-wei. Input-output finite time stability for event-triggered control of switched singular systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(3): 75-84. |
|