JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (2): 16-22.doi: 10.6040/j.issn.1671-9352.0.2019.353

Previous Articles    

Boundedness for commutator of multilinear Hardy-Littlewood maximal operator

WANG Min, FANG Xiao-zhen, QU Meng, SHU Li-sheng   

  1. School of Mathematics and Statistics, Anhui Normal University, Wuhu 241003, Anhui, China
  • Published:2020-02-14

Abstract: By using the method of intermediate value and the properties of binary cubes, the mapping property from Lp1(Rn)×Lp2(Rn)×…×Lpm(Rn)to Lq(Rn)of the commutator Mbj(j=1,2,…,m) generated by local integrable function bj and multilinear Hardy-Littlewood maximal operator M is obtained.

Key words: multilinear Hardy-Littlewood maximal operator, commutator, average oscillation function space, Lipschiz function space

CLC Number: 

  • O174.2
[1] COIFMAN R, ROCHBERG R, WEISS G. Factorization theorems for Hardy spaces in several variables[J]. Ann of Math, 1976, 103(3):611-635.
[2] JANSON S. Mean oscillation and commutators of singular integral operators[J]. Ark Math, 1978, 16(2):263-270.
[3] CHANILLO S. A note on commutators[J]. Indiana Univ Math J, 1982, 31(1):7-16.
[4] GARCIA-CUERVA J, HARBOURE E, SEGOVIA C, et al. Weighted norm inequalities for commutators of strongly singular integrals[J]. Indiana Univ Math J, 1991, 40(4):1397-1420.
[5] SEGOVIA C, TORREA J L. Weighted inequalities for commutators of fractional and singular integrals[J]. Publ Mat, 1991, 35(1):209-235.
[6] LI Dengfeng, HU Guoen, SHI Xianliang. Weighted norm inequalities for the maximal commutators of singular integral operators[J]. J Math Anal Appl, 2006, 319(2):509-521.
[7] GOGATISHVILI A, MUSTAFAYEV R, AGCAYAZL M. Weak-type estimates in Morrey spaces for maximal commutator and commutator of maximal function[J]. Tokyo J Math, 2018, 41(1):193-218.
[8] GRAFAKOS L, TORRES R H. Multilinear Calderón-Zygmund theory[J]. Adv in Math, 2002, 165(1):124-164.
[9] WANG Wei, XU Jingshi. Commutators of multilinear singular integrals with Lipschitz functions[J]. Communications in Math Res, 2009, 25(4):318-328.
[10] LERNER A K, OMBROSI S, PÉREZ C, et al. New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory[J]. Adv Math, 2009, 220(4):1222-1264.
[11] WANG Dinghuai, ZHOU Jiang. Necessary and sufficient conditions for boundedness of commutators of bilinear Hardy-Littlewood maximal function[EB/OL].(2017-08-31)[2018-10-02].https://arxiv.org/pdf/1708.09549.pdf.
[12] WANG Dinghuai, ZHOU Jiang, TENG Zhidong. On the compactness of commutators of Hardy-Littlewood maximal operator[J]. Anal Math, 2019, 45(3):599-619.
[13] ZHANG Pu. Multiple weighted estimates for commutators of multilinear maximal function[J]. Acta Math Sin(Engl Ser), 2015, 31(6):973-994.
[14] TANG Lin. Weighted estimates for vector-valued commutators of multilinear operators[J]. Proc Roy Soc Edinburgh Sect A, 2008, 138(4):897-922.
[15] DIENING L. Maximal function on generalized Lebesgue spaces Lp(·)[J]. Mathematical Inequalities and Applications, 2004, 7(2):245-253.
[16] STEIN E M. Singular integrals and differentiability properties of functions[M]. Princeton:Princeton University Press, 1970.
[17] HYTÖNEN T P. The Lp-to-Lq boundedness of commutators with applications to the Jacobian operator[EB/OL].(2018-04-30)[2018-10-05]. https://arxiv.org/pdf/1804.11167.pdf.
[1] TAO Shuang-ping, YANG Yu-he. Weighted estimates of fractional maximal operator and its commutator on weighted λ-central Morrey spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 68-75.
[2] ZHAO Huan, ZHOU Jiang. Commutators of multilinear Calderón-Zygmund operator on Herz-type Hardy spaces with variable exponent [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 42-50.
[3] LU Qiang-de, TAO Shuang-ping. Boundedness of commutators of Calderón-Zygmund operators and fractional integrals in homogeneous grand variable exponent Lebesgue spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 54-58.
[4] YAO Jun-qing, ZHAO Kai. Commutators of fractional integrals on Herz-Morrey spaces with variable exponent [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 100-105.
[5] MA Xiao-jie, ZHAO Kai. Boundedness of commutators of the fractional Hardy operators on weighted spaces with variable exponent [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 106-110.
[6] WANG Jie, QU Meng, SHU Li-sheng. Boundedness of the Littlewood-Paley operators and cummutators on the Herz spaces with variable exponents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 9-18.
[7] WANG Jin-ping, ZHAO Kai. Lipschitz commutators of fractional integrals on Herz-type spaces with variable exponents [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(10): 6-10.
[8] GOU Yin-xia, TAO Shuang-ping, DAI Hui-ping. Weighted estimates of fractional integral with rough kernel and its commutators on Herz-type Hardy Spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(07): 80-87.
[9] LI Hao-jing, CHEN Zheng-li*, LIANG Li-li. Note on the Schrdinger uncertainty relation#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 67-73.
[10] ZHAO Kai, JI Chun-jing, HUANG Zhi. Boundedness of the commutator of some Marcinkiewicz integral on Herz-type Hardy spaces [J]. J4, 2013, 48(6): 1-4.
[11] YAN Yan-zong, SHAO Xu-kui, WANG Su-ping. Boundedness of Marcinkiewicz integral higher commutators with variable kernels on Hardy spaces [J]. J4, 2013, 48(2): 67-71.
[12] DU Hong-shan, ZHANG Lei*. Lipschitz estimates for commutators of oscillatory integral operators [J]. J4, 2012, 47(4): 80-83.
[13] ZHAO Kai, DONG Peng-juan, SHAO Shuai. Weighted boundedness of commutators of the fractional integral on λ-central Morrey spaces [J]. J4, 2011, 46(12): 88-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!