JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (4): 102-107.doi: 10.6040/j.issn.1671-9352.0.2019.815
CHEN Qian-zhu, HU Hai-ping*
CLC Number:
[1] NESTEROV Y. A method for unconstrained convex minimization problem with the rate of convergence O(1/k2)[J]. Soviet Mathematics Doklady, 1983, 27:372-376. [2] NESTEROV Y. Smooth minimization of non-smooth functions[J]. Math Program, 2005, 103(1):127-152. [3] DRORI Y,TEBOULLE M. Performance of first-order methods for smooth convex minimization: a novel approach[J]. Mathematical Programming, 2014, 145(1/2):451-482. [4] KIM D, FESSLER J A. Optimized first-order methods for smooth convex minimization[J]. Mathematical Programming, 2016, 159(1/2):81-107. [5] TAYLOR A B, HENDRICKX J M, GLINEUR F. Smooth strongly convex interpolation and exact worst-case performance of first-order methods[J]. Mathematical Programming, 2017, 161(1): 307-345. [6] NEMIROVSKY A. Information-based complexity of linear operator equations[J]. Journal of Complexity, 1992, 8(2):153-175. |
[1] | HUANG Ai-ling, LIN Shuai. Finite dimensional approximation of linear stochastic Schrödinger equation in terms of localization of quantum Bernoulli noises [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 67-71. |
|