JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (4): 48-53.doi: 10.6040/j.issn.1671-9352.0.2019.560
LI Fang-shu, LI Lin-han, ZHANG Liang-yun*
CLC Number:
[1] CALDERÓN A J, SÁNCHEZ J. Split 3-Leibniz algebras[J]. Journal of Geometry and Physics, 2017, 116(3):204-215. [2] BAI R P, GUO L, LI J, et al. Rota-Baxter 3-Lie algebras[J]. Journal of Mathematical Physics, 2013, 54(6):263-277. [3] BARNES D W. Some theorems on Leibniz algebras[J]. Communications in Algebra, 2011, 39(7):2463-2472. [4] CASAS J M, LODAY J L, PIRASHVILI T. Leibniz n-algebras[C] // Forum Mathematicum. Berlin: De Gruyter, 2002: 189-208. [5] ROTA G C. Baxter algebras and combinatorial identities. I[J]. Bulletin of the American Mathematical Society, 1969, 75(2):330-334. [6] ANDREWS G E, GUO L, KEIGHER W, ONO K. Baxter algebras and Hopf algebras[J]. Transactions of the American Mathematical Society, 2003, 355(8):4639-4656. [7] EBRAHIMI-FARD K, GUO L. Rota-Baxter algebras and dendriform algebras[J]. Journal of Pure and Applied Algebra, 2005, 212(2):320-339. [8] JIAN Runqiang. Construction of Rota-Baxter algebras via Hopf module algebras[J]. Science in China Mathematics, 2014, 57(11):2321-2328. [9] LI X X, HOU D P, BAI C M. Rota-Baxter operators on pre-Lie algebras[J]. Journal of Nonlinear Mathematical Physics, 2007, 14(2):269-289. [10] ZHANG L Y, LI L H, ZHENG H H. Rota-Baxter Leibniz algebras and their constructions[J/OL]. Advances in Mathematical Physics, 2018: 1-15[2019-01-01]. http://downloads.hindawi.com/journals/amp/2018/8540674.pdf. [11] AN Huihui, BAI Chengming. From Rota-Baxter algebras to pre-Lie algebras[J]. Journal of Physics A Mathematical and Theoretical, 2008, 41(1):145-150. [12] BÖHM G, NILL F, SZLACHÁNYI K. Weak Hopf algebras(I): Integral theory and C*-structure[J]. Journal of Algebra, 1999, 221(2):385-438. [13] ZHANG L Y. The structure theorem of weak comodule algebras[J]. Communications in Algebra, 2010, 38(1):254-260. |
[1] | ZHANG Qian, LI Xuan, LI Xin, ZHENG Hui-hui, LI Lin-han, ZHANG Liang-yun. The construct of Rota-Baxter algebra on the Sweedler 4-dimensional Hopf algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(6): 47-52. |
[2] | CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110. |
[3] | DONG Li-hong1,2, GUO Shuang-jian1. The fundamental theorem for weak Hopf module in Yetter-Drinfeld module categories [J]. J4, 2013, 48(2): 20-22. |
[4] |
CHEN Hua-xi1, ZHANG Xiao-hui2, XU Qing-bing3.
The Structure Theorem of weak comodule algebras in Yetter-Drinfeld module categories [J]. J4, 2013, 48(12): 14-17. |
|