JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (4): 92-96.doi: 10.6040/j.issn.1671-9352.0.2019.510

Previous Articles    

Description of the upper(lower)bounds of Resolvent Estrada index

JIA Shu-xiang1, DENG Bo1,2,3,4*, YE Cheng-fu1, FU Feng1, CHEN Hui-long1   

  1. 1. College of Mathematics and Statistics, Qinghai Normal University, Xining 810008, Qinghai, China;
    2. Tibetan Intelligent Information Processing and Machine Translation Key Laboratory, Xining 810008, Qinghai, China;
    3. Key Laboratory of Tibetan Information Processing and Machine Translation, Qinghai Province, Xining 810008, Qinghai, China;
    4. College of Science, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
  • Published:2020-04-09

Abstract: The Resolvent Estrada index in graph G is the topological index of a class of important graphs proposed by Estrada and Higham in 2010 to detect the centrality of complex networks and molecular structures. It is defined as follow.REE(G)=∑ni=1((n-1)/(n-1-λi))=∑ni=1(1-(λ1)/(n-1))-1,where λ12,…,λn are the eigenvalues of the adjacency matrix of G. REE(G)is often used to quantify the degree of molecular chains so that it is widely used in the filed of the quantum chemistry. In this paper, Cauchy-Schwartz inequality and Resolvent Estrada energy are used to describe the upper and lower bounds of Resolvent Estrada index.

Key words: Resolvent Estrada index, Resolvent Estrada energy, adjacent matrix, eigenvalue

CLC Number: 

  • O157
[1] CVETKOVIC D, DOOB M, SACHS H. Spectra of graphs: theory and application[M]. New York: Academic Press, 1980.
[2] BENZI M, BOITO P. Quadrature rule-based bounds for functions of adjacency matrices[J]. Linear Algebra and Its Applications, 2010, 433(3):637-652.
[3] GUTMAN I, FURTULA B, ZOGIC E, et al. Resolvent energy of graphs[J]. MATCH Commun Math Comput Chem, 2016, 75:279-290.
[4] 陈小丹, 钱建国. 图的预解Estrada指标的界的估计[J]. 数学研究, 2012, 45(2):159-166. CHEN Xiaodan, QIAN Jianguo. Bounding the resolvent Estrada index of a graph[J]. Journal of Mathematical Study, 2012, 45(2):159-166.
[5] CHEN Xiaodan, QIAN Jianguo. On resolvent Estrada index[J]. J Math Comput Chem, 2015, 73:163-174.
[6] DAS K C, KUMAR P. Some new bounds on the spectral radius of graphs[J]. Discrete Mathematics, 2004, 281(1/2/3):149-161.
[7] CUI Zhihui. On Harary matrix, Harary index and Harary energy[J]. MATCH Commun Math Comput Chem, 2012, 68:815-823.
[8] ZHOU Bo. On Estrada index[J]. MATCH Commun Math Comput Chem, 2008, 60:485-492.
[9] CVETKOVIC D, ROWLINSON P, SIMIC S. An introduction to the theory of graph spectra[M]. Cambridge: Cambridge University Press, 2010.
[10] ESTRADA E, HIGHAM D J. Network properties revealed through matrix functions[J]. SIAM Review, 2010, 52(4):696-714.
[11] ESTRADA E. Characterization of 3D molecular structure[J]. Chemical Physics Letters, 2000, 319(5/6):713-718.
[12] ESTRADA E, RODRÍGUEZ-VELÁZQUEZ J A. Subgraph centrality in complex networks[J]. Physical Review E, 2005, 71(5):056103.
[1] JI Jie. Eigenvalues asymptotic formula and trace formula for a class of impulsive Sturm-Liouville operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 49-56.
[2] WANG Su-yun, LI Yong-jun. Solvability of nonlinear second-order boundary value problems with nonlinearities which cross the resonance points [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 53-56.
[3] JIAN Yuan, LIU Ding-you. Extremal eigenvalues of a class of tridiagonal interval matrices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 15-22.
[4] HAO Ping-ping, WEI Guang-sheng. Eigenvalue asymptotics of a class of the Dirac operator [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(02): 55-59.
[5] JIN Guang-qing, ZUO Lian-cui*. An Upper Bound on the Sum of the k Largest Eigenvalues of  the Signless Laplacian Matrix of a Graph [J]. J4, 2013, 48(8): 1-4.
[6] WANG Feng. Estimation on lower bounds for the minimum eigenvalue of the Hadamard  product of inverse matrix of nonsingular M-matrix and M-matrix [J]. J4, 2013, 48(8): 30-33.
[7] SUN De-rong, XU Lan. Trees with exactly three main eigenvalues [J]. J4, 2013, 48(6): 23-28.
[8] ZHAO Na. The finite spectrum of SturmLiouville problems on time scales [J]. J4, 2013, 48(09): 96-102.
[9] 杨晓英,刘新. New lower bounds on the minimum eigenvalue of the Hadamard product of an M-matrix and its inverse [J]. J4, 2012, 47(8): 64-67.
[10] CAO Hai-song, WU Jun-liang. On localization of eigenvalues in elliptic region [J]. J4, 2012, 47(10): 49-53.
[11] LIAO Wen-shi, WU Jun-liang. Some new upper bounds of the spread of a matrix [J]. J4, 2012, 47(10): 54-58.
[12] GAO Jie. Structure of eigenvalues of multi-point boundary value problems [J]. J4, 2011, 46(8): 17-22.
[13] QIAN Xiao-yan. A subspace accelerated truncated Newton algorithm for solving the extreme eigenvalue of large-scale sparse symmetric matrix [J]. J4, 2011, 46(8): 8-12.
[14] WU Yun1, YAO Yangxin2. Eigen-value problem of a bi-harmonic equation in R4 [J]. J4, 2011, 46(6): 45-48.
[15] WU Tingzeng. Constructing cospectral graphs [J]. J4, 2011, 46(6): 60-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!