JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (5): 55-70.doi: 10.6040/j.issn.1671-9352.0.2019.460
ZHAO Wei-li, ZHOU Hong-jun*
CLC Number:
[1] BELIAKOV G, PRADERA A, CALVO T. Aggregation functions: a guide for practitioners[M]. Berlin: Springer, 2007. [2] ZIMMERMANN H J, ZYSNO P. Decisions and evaluations by hierarchical aggregation of information[J]. Fuzzy Sets and Systems, 1983, 10:243-260. [3] GRABISCH M, MARICHAL J L, MESIAR R, et al. Aggregations functions[M]. New York: Cambridge University Press, 2009. [4] KLEMENT E P, MESIAR R, PAP E. Triangular norms[M]. Dordrecht: Kluwer, 2000. [5] FODOR J C, YAGER R R, RYBALOV A. Structure of uninorms[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 1997, 5(4):411-427. [6] YAGER R R, RYBALOV A. Uninorm aggregation operators[J]. Fuzzy Sets and Systems, 1996, 80:111-120. [7] MAS M, MAYOR G, TORRENS J. T-operators[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 1999, 7(1):31-50. [8] CALVO T, BAETS B D, FODOR J C. The functional equations of Frank and Alsina for uninorms and nullnorms[J]. Fuzzy Sets and Systems, 2001, 120(3):385-394. [9] AKELLA P. Structure of n-uninorms[J]. Fuzzy Sets and Systems, 2007, 158(15):1631-1651. [10] ZONG Wenwen, SU Yong, LIU Huawen, et al. On the structure of 2-uninorm[J]. Information Sciences, 2018, 467:506-527. [11] BUSTINCE H, PAGOLA M, MESIAR R, et al. Grouping, overlap, and generalized bientropic functions for fuzzy modeling of pairwise comparisons[J]. IEEE Transactions on Fuzzy Systems, 2012, 20(3):405-415. [12] 周红军, 兰淑敏. 闭区间上单调不减函数的右连续伪逆及其在三角余模构造中的应用[J]. 陕西师范大学学报(自然科学版), 2019, 47(5):71-80. ZHOU Hongjun, LAN Shumin. Right-continuous pseudo-inverse of monotone functions on closed intervals and its applications in the construction of triangular conorms[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2019, 47(5):71-80. [13] ACZÉL J. Lectures on functional equations and their applications[M]. New York: Academic Press, 1966. [14] CARBONELL M, MAS M, SUNER J, et al. On distributivity and modularity in De Morgan triplets[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 1996, 4(4):351-368. [15] DAVEY B A, PRIESTLEY H A. Introduction to lattices and order[M]. New York: Cambridge University Press, 1990. [16] MAS M, MAYOR G, TORRENS J. The modularity condition for uninorms and t-operators[J]. Fuzzy Sets and Systems, 2002, 126(2):207-218. [17] QIN Feng. Uninorm solutions and(or)nullnorm solutions to the modularity condition equations[J]. Fuzzy Sets and Systems, 2004, 148(2):231-242. [18] RAK E. The modularity equation in the class of 2-uninorms[C] // IEEE International Conference Intelligent Systems. Advances in Intelligent Systems and Computing. [S.l.] : Springer, 2015: 45-54. [19] FECHNER W, RAK E, ZEDAM L. The modularity law in some classes of aggregation operators[J]. Fuzzy Sets and Systems, 2018, 332:56-73. [20] WANG Yaming, CHEN Xiangjun, LIU Huawen. A note on the modularity law in some classes of aggregation operators[J]. Fuzzy Sets and Systems, 2019, 372:142-147. [21] ZHAN Hang, WANG Yaming, LIU Huawen. The modularity condition for semi-t-operators and semi-uninorms[J]. Fuzzy Sets and Systems, 2018, 334:36-59. [22] ZHAN Hang, WANG Yaming, LIU Huawen. The modularity condition for semi-t-operators[J]. Fuzzy Sets and Systems, 2018, 346:108-126. [23] SU Yong, RIERA J V, RUIZ-AGUILERA D, et al. The modularity condition for uninorms revisited[J]. Fuzzy Sets and Systems, 2019, 357:27-46. [24] WANG Yaming, LIU Huawen. The modularity condition for overlap and grouping functions[J]. Fuzzy Sets and Systems, 2019, 372:97-110. [25] MAS M, MESIAR R, MONSERAT M, et al. Aggregation operations with annihilator[J]. International Journal of General Systems, 2005, 34(1):1-22. [26] JOCIC D, ŠTAJNER-PAPUGA I. Distributivity and conditional distributivity for T-uninorms[J]. Information Sciences, 2018, 424:91-103. [27] FANG Bowen, HU Baoqing. Distributivity and conditional distributivity for S-uninorms[J]. Fuzzy Sets and Systems, 2019, 372:1-33. |
[1] | CHENG Ya-fei, ZHAO Bin. Characterization of fuzzy implications satisfying the law of importation with respect to conjunctive 2-uninorms [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 20-32. |
[2] | SONG Yi-fan, ZHAO Bin. On the (α,O)-migrative of 2-uninorms over overlap functions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(11): 97-107. |
|