### f-injective modules with respect to semidualizing modules

LAN Kai-yang, LU Bo*

1. College of Mathematics and Computer Science, Northwest Minzu University, Lanzhou 730030, Gansu, China
• Published:2020-07-14

Abstract: Let R be a commutative ring and C a semidualizing R-module. The f-injective modules with respect to a semidualizing R-module C is defined and studied, and it is proved that a homomorphism F→M of R-modules is an injective(f-injective)precover of M if and only if HomR(C,F)→HomR(C,M) is a C-injective(C-f-injective)precover.

CLC Number:

• O154.2
 [1] JONES M F. F-projectivity and flat epimorphisms[J]. Comm Algebra, 1981, 9:1603-1616.[2] MAHER Z. On f-injective modules[J]. Arch Math, 2002, 78:345-349.[3] HARTSHORNE R. Local cohomology, lecture notes in mathematics[M]. Berlin: Springer-Verlag, 1967.[4] FOXBY H B. Gorenstein modules and related modules[J]. Math Scand, 1972, 31:267-284.[5] VASCONCELOS W V. Divisor theory in module categories[M]. [S.l.] : North-Holland Math Studies, 1974.[6] HOLM H, WHITE D. Foxby equivalence over associative rings[J]. J Math Kyoto Univ, 2007, 47:781-808.[7] MAO Lixin. Envelope, covers and semidualizing modules[J]. J Algebra Appl, 2019, 18:1-12.[8] YAN Xiaoguang, ZHU Xiaosheng. Characterizations of some rings with C-projective, C-(FP-)injective and C-flat modules[J]. Czechoslovak Math J, 2011, 61:641-652.[9] WHITE D. Gorenstein projective dimension with respect to a semidualizing module[J]. J Commut Algebra, 2010, 2:111-137.[10] TAKAHASHI R, WHITE D. Homological aspects of semidualizing modules[J]. Math Scand, 2010, 106:5-22.[11] LAM T Y. Lectures on modules and rings[M]. New York: Springer-Verlag, 1999.[12] MAO Lixin. Finitely projective modules with respect to a semidualizing modules[J]. J Algebra Appl, 2019, 18:1-16.[13] RAM N G. On f-injective modules and semi-hereditary rings[J]. Proc Nat Inst Sci(India Part A), 1969: 323-328.[14] GENG Yuxian. F-projective and f-injective modules[J]. J Math Res Exp Feb, 2008, 28:74-80.[15] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. New York: Walter de Gruyter, 2000.
 [1] CHENG Hai-xia, YIN Xiao-bin. Gorenstein injective objects in Abelian categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 79-84. [2] RAO Yan-ping, YANG Gang. Gorenstein weak flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 68-75. [3] SONG Xian-mei. Note on the existence of F-covers [J]. J4, 2012, 47(10): 4-6. [4] ZHU Hui-hui, ZHOU Ji. Gorenstein injective syzygy modules [J]. J4, 2011, 46(4): 64-67. [5] FENG Xiao and ZHANG Shun-hua . τ-Flat test modules and τ-flatcover [J]. J4, 2007, 42(1): 31-34 .
Viewed
Full text

Abstract

Cited

Shared
Discussed