JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (8): 65-74.doi: 10.6040/j.issn.1671-9352.0.2019.540

Previous Articles    

PBW-deformations of type B2 quantum group and their symmetry property

REN Xiao-qian1, XU Yong-jun1,2*   

  1. 1. School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong, China;
    2.School of Mathematics, Shandong University, Jinan 250100, Shandong, China
  • Published:2020-07-14

Abstract: The negative parts of quantum groups are very important connected graded algebras appeared in the quantum group theory. Their PBW-deformations are called the PBW-deformations of quantum groups. Except the A2 case, the defining relations of these algebras are homogeneous quantum Serre relations with mixed degrees. In particular, the defining relations of the negative part of type B2 quantum group are respectively the homogeneous quantum Serre relations with degree 3 and 4. In this paper, in the framework of PBW-deformations of connected graded algebras, we explicitly characterize all the PBW-deformations of type B2 quantum group and investigate their symmetry property, i.e., all the symmetric PBW-deformations of type B2 quantum group under four kinds of involution anti-automorphisms are obtained.

Key words: quantum group, connected graded algebra, symmetric PBW-deformation, complexity, Jacobi conditions

CLC Number: 

  • O152.1
[1] BRAVERMAN A, GAITSGORY D. Poincaré-Birkhoff-Witt theorem for quadratic algebras of Koszul type[J]. Journal of Algebra, 1996, 181(2): 315-328.
[2] POLISHCHUK A, POSITSELSKI L. Quadratic algebras[M]. Rhode Island: AMS, 2005.
[3] BERGER R. Koszulity for nonquadratic algebras[J]. Journal of Algebra, 2001, 239(1): 705-734.
[4] FLØYSTAD G, VATNE J E. PBW-deformations of N-Koszul algebras[J]. Journal of Algebra, 2006, 302(1): 116-155.
[5] BERGER R, GINZBURG V. Higher symplectic reflection algebras and non-homogeneous N-Koszul property[J]. Journal of Algebra, 2006, 304(1): 577-601.
[6] CASSIDY T, SHELTON B. PBW-deformation theory and regular central extensions[J]. Journal für die Reine und Angewandte Mathematik, 2007, 610: 1-12.
[7] JANTZEN J C. Lectures on quantum groups[M]. Rhode Island: AMS, 1995.
[8] LETZTER G. Subalgebras which appear in quantum Iwasawa decompositions[J]. Canada Journal of Mathematics, 1997, 49(6): 1206-1223.
[9] LETZTER G. Symmetric pairs for quantized enveloping algebras[J]. Journal of Algebra, 1999, 220(2): 729-767.
[10] LETZTER G. Coideal subalgebras and quantum symmetric pairs[C] // New Directions in Hopf Algebras. Cambridge: Cambridge University Press, 2002: 117-166.
[11] LETZTER G. Quantum symmetric pairs and their zonal spherical functions[J]. Transformation Groups, 2003, 8(3): 261-292.
[12] KOLB S, PELLEGRINI J. Braided group actions on coideal subalgebras of quantized enveloping algebras[J]. Journal of Algebra, 2011, 336(1): 395-416.
[13] XU Yongjun, YANG Shilin. PBW-deformations of quantum groups[J]. Journal of Algebra, 2014, 408(1): 222-249.
[14] XU Yongjun, WANG Dingguo, CHEN Jialei. Analogues of quantum Schubert cell algebras in PBW-deformations of quantum groups[J]. Journal of Algebra and Its Applications, 2016, 15(10): 1650179.
[15] XU Yongjun, HUANG Hualin, WANG Dingguo. Realization of PBW-deformations of type An quantum groups via multiple Ore extensions[J]. Journal of Pure and Applied Algebra, 2019, 223(4): 1531-1547.
[16] 张鑫. 连通分次代数的对称PBW形变[D]. 曲阜: 曲阜师范大学, 2019. ZHANG Xin. Symmetric PBW-deformations of connected graded algebras[D]. Qufu: Qufu Normal University, 2019.
[1] HE Yu-xing, Abdukadir Obul. Gröbner-Shirshov basis of irreducible modules over quantum group of type B2 [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(8): 28-37.
[2] LIU Long-fei, YANG Xiao-yuan. On the linear complexity of a new generalized cyclotomic sequence with length p3 over GF(l) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(3): 24-31.
[3] . Linear complexity of balanced quaternary generalized cyclotomic sequences with Period pq [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(9): 145-150.
[4] MAO Jia-fa, HUANG Yan-hong, NIU Xin-xin, XIAO Gang, ZHU Li-nan, SHENG Wei-guo. Research on watermarking payload of the spatial images based on MPUI model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(9): 68-75.
[5] LIU Wu-ying, YI Mian-zhu, ZHANG Xing. A space-time-efficient multi-category text categorization algorithm [J]. J4, 2013, 48(11): 99-104.
[6] MA Yun-yan, LUAN Yi-hui*. Detecting sparse signal segments by local LRS method [J]. J4, 2012, 47(12): 1-5.
[7] CHEN Yue-jiao, ZHANG Ming-wang*. A full-newton step infeasible interior-point algorithm for monotone linear  complementarity problems based on a kernel function [J]. J4, 2012, 47(10): 81-88.
[8] HU Qiang, ZHANG Ming-wang*, LI Wei-hua. A second-order Mehrotra-type predictor-corrector algorithm for solving convex quadratic programming [J]. J4, 2011, 46(2): 89-96.
[9] TANG Jing-yong1,2, HE Guo-ping3. Primal-dual infeasible interior-point algorithm for  second-order cone programming [J]. J4, 2011, 46(11): 96-100.
[10] GUO Wen-juan, YANG Gong-ping*, DONG Jin-li. A review of fingerprint image segmentation methods [J]. J4, 2010, 45(7): 94-101.
[11] LI De-cai1,2, ZHU Mei-ling2, LI Li-bin2*. The finite dimensional simple modules over the positive part of the quantum group of A2 [J]. J4, 2010, 45(12): 31-32.
[12] . A wideneighborhood predictorcorrecting algorithm for
linear programming
[J]. J4, 2009, 44(7): 66-70.
[13] WANG Jin-Ling, LAN Juan-Li. A special generalized self-shrinking sequence on GF(q) [J]. J4, 2009, 44(10): 91-96.
[14] ZHOU Yi-yuan,ZHANG Ming-wang*,LU¨ Yan-li,ZHAO Yu-qin . A wide-neighborhood predictor-corrector algorithm for convex quadratic programming [J]. J4, 2008, 43(9): 73-80 .
[15] WANG Jin-ling,LIU Zong-cheng . The main-controlled generator [J]. J4, 2008, 43(1): 81-87 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!