JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (1): 52-59.doi: 10.6040/j.issn.1671-9352.0.2020.340
YANG Guang-bo, WANG Cai-shi, LUO Yan, WANG Yan-yan, NAN Xue-qi
CLC Number:
[1] AHARONOV Y, DAVIDOVICH L, ZAGURY N. Quantum random walks[J]. Physical Review A, 1993, 48(2):1687-1690. [2] VENEGAS ANDRACA S E. Quantum walks: a comprehensive review[J]. Quantum Inf Process, 2012, 11(5):1015-1106. [3] PORTUGAL R, SANTOS R A M, FERNANDES T D, et al. The staggered quantum walk model[J]. Quantum Inf Process, 2016, 15(1):85-101. [4] PORTUGAL R. Staggered quantum walks on graphs[J]. Physical Review A, 2016, 93(6):1-13. [5] KONNO N, SATO I, SEGAWA E. The spectra of the unitary matrix of a 2-tessellable staggered quantum walk on a graph[EB/OL].(2017)[2020]. https://arxiv.org/abs/1701.08274v1. [6] KONNO N, IDE Y, SATO I. The spectral analysis of the unitary matrix of a 2-tessellable staggered quantum walk on a graph[J]. Linear Algebra and Its Applications, 2018, 545: 207-225. [7] HIGUCHI Y, PORTUGAL R, SATO I. Eigenbasis of the evolution operator of 2-tessellable quantum walks[J]. Linear Algebra and Its Applications, 2019, 583:257-281. [8] PORTUGAL R. Quantum walks and search algorithms[M]. 2nd ed. Berlin: Springer, 2018. [9] BIGGS N. Algebraic graph theory[M]. Cambridge: Cambridge University Press, 1974. [10] CHAGAS B, PORTUGAL R, BOETTCHER S, et al. Staggered quantum walk on hexagonal lattices[J]. Physical Review A, 2018, 98(5):1-8. |
[1] | SUN Shuang, LIU Hong-xing. The inclusion graph of S-acts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 121-126. |
[2] | SHI Song1, WANG Ming-wen1, TU Wei2, HE Shi-zhu1. Extended information retrieval model based on the Markov network cliques [J]. J4, 2011, 46(5): 54-57. |
|