JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (2): 41-47.doi: 10.6040/j.issn.1671-9352.0.2020.347

Previous Articles    

Nonlinear maps preserving mixed Jordan triple η-product on the von Neumann algebras

PANG Yong-feng, ZHANG Dan-li, MA Dong   

  1. School of Science, Xian University of Architecture and Technology, Xian 710055, Shaanxi, China
  • Published:2021-01-21

Abstract: Let M and N be two factor von Neumann algebras that their dimensions are larger than 1. It is proved that every bijective map preserving mixed Jordan triple η-products with η≠-1 from M into N is of the form A→εΦ(A), where ε∈{-1,1} and εΦ is a linear *-isomorphism or conjugate linear *-isomorphism when η∈R and εΦ is a linear *-isomorphism when η∈C\R.

Key words: factor von Neumann algebra, mixed Jordan triple η-product, isomorphism

CLC Number: 

  • O177.1
[1] CUI Jianlian, LI Chikwong. Maps preserving product XY-YX* on factor von Neumann algebras[J]. Linear Algebra and its Applications, 2009, 431(5):833-842.
[2] QI Xiaofei, HOU Jinchuan. Additive Lie(ξ-Lie)derivations and generalized Lie(ξ-Lie)derivations on prime algebras[J]. Acta Mathematica Sinica(English Series), 2013, 29(2):383-392.
[3] WANG Meili, JI Guoxing. Maps preserving *-Lie product on factor von Neumann algebras[J]. Linear and Multilinear Algebra, 2016, 64(11):2159-2168.
[4] LI Changjing, LU Fangyan, WANG Ting. Nonlinear maps persevering the Jordan triple *-product on von Neumann algebras[J]. Annals of functional Analysis, 2016, 7(3):496-507.
[5] LI Changjing, CHEN Quanyuan, WANG Ting. Nonlinear maps persevering the Jordan triple *-production on factor von Neumann algebras[J]. Chinese Annals of Mathematics(Series B), 2018, 39(4):633-642.
[6] LI Changjing, LU Fangyan, FANG Xiaochun. Nonlinear mappings preserving product XY+YX* on factor von Neumann algebras[J]. Linear Algebra and its Applications, 2013, 438(5):2339-2345.
[7] DAI Liqing, LU Fangyan. Nonlinear maps preserving Jordan *-products[J]. Journal of Mathematical Analysis and Applications, 2014, 409(1):180-188.
[8] HUO Donghua, ZHENG Baodong, LIU Hongyu. Nonlinear maps preserving Jordan triple η-*-products[J]. Journal of Mathematical Analysis and Applications, 2015, 430(1):830-844.
[9] LI Changjing, LU Fangyan. Nonlinear maps preserving the Jordan triple 1-*-product on von Neumann algebras[J]. Complex Analysis Operator Theory, 2017, 11(1):109-117.
[10] 周游,张建华. 因子冯诺依曼代数上保持混合Lie三重ξ-积的非线性映射[J]. 山东大学学报(理学版), 2019, 54(6):106-111. ZHOU You, ZHANG Jianhua. Nonlinear maps preserving mixed Lie triple ξ-product on factor von Neumann algebras[J]. Journal of Shandong University(Natural Science), 2019, 54(6):106-111.
[1] ZHOU You, ZHANG Jian-hua. Nonlinear maps preserving mixed Lie triple ξ-product on factor von Neumann algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(6): 106-111.
[2] YANG Xiao-fei. Characterization of L-fuzzifying topological spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 114-118.
[3] GAO Rui-mei, SUN Yan. Quadratic Gröbner basis and the isomorphism of Orlik-Solomon algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 89-94.
[4] WANG Dong-yan, LI Shenggang*, YANG Wen-hua. The product operations and related decompostions of fuzzy graphs [J]. J4, 2013, 48(6): 104-110.
[5] ZHAO Jie-ling, ZHANG Jian-hua. Characterizations of Jordan isomorphism on standard operator algebras [J]. J4, 2013, 48(10): 1-4.
[6] JIANG Xiao-ping. The isomorphism classes of double loop networks [J]. J4, 2012, 47(9): 88-91.
[7] WANG Yi-rui1, LI Sheng-gang2. Quasi-uniformities and topologies on a finite set [J]. J4, 2011, 46(8): 80-83.
[8] JI Pei-sheng, SUN Lin, CHEN Jian-hui. Jordan multiplicative isomorphisms on Spin factors [J]. J4, 2011, 46(8): 1-3.
[9] ZHONG Xiao-jing, LI Sheng-gang and SU Hua-fei . Pre-topologies and pre-convergence classes of family of nets [J]. J4, 2007, 42(8): 62-66 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!